Post New Answer
\(\log_{10}(x) = 3 + \log_{10}(y)\)
find \(\dfrac{x}{y}\)
Formula:
\(\boxed{\log\left({\dfrac{x}{y}}\right) = \log(x)-\log(y)}\)
\(\begin{array}{|rcll|} \hline \log_{10}(x) &=& 3 + \log_{10}(y) \quad | \quad -\log_{10}(y) \\\\ \log_{10}(x) -\log_{10}(y) &=& 3 \\\\ \log_{10}\left({\dfrac{x}{y}}\right) &=& 3 \\\\ \dfrac{x}{y} &=& 10^3 \\\\ \mathbf{ \dfrac{x}{y} } &=& \mathbf{1000} \\ \hline \end{array}\)