Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
359
2
avatar

Question:
The number of real solutions to the equation |sec(x)2|=k, where 2πx2π

is determined by the value of the constant k.

Find the number of real solutions for all values of k, given that kϵR.

-----------------------------------------------------------------------------------------------

Here is my attempt:

1cos(x)2=±k for 2πx2π

cos(x)=12±k

x=cos1(12±k) ( 2πx2π ) 

So:

2πcos1(12±k)2π implying: 112±k1.

Therefore, 12±k=1, so k=±1

Now, i subsituited k=1 and k=-1 in the original equation |sec(x)2|=k and considering the domain, 2πx2π

found the solutions seperately for each case (I.e. k=1 and k=-1) Then counted them and they are 7 distinct solutions.

Is this correct? As I do not have a model answer to check. 

Thanks in advance.

 Jan 27, 2022
 #1
avatar
+1

I just found a solution, what I did above is not correct.

 

-->Sketch the graph of y=|sec(x)2|, and then consider y=k as k varies over R.

That is,

if k<0 -->No real solutions

if k=0 -->4 real solutions

if 0 8 real solutions

if k=1 -->7 real solutions

if 1 4 real solutions

if k=3 -->6 real solutions

if k>3 ---> 8 real solutions.

 Jan 27, 2022
 #2
avatar+118696 
+1

here is the graphical solution

 

 

 

k less than 0                      0 solutions

k=0                                   4 solutions

k is between 0 and 1         8 solutions

k=1                                     7 solutions

k is between 1 and 3          4 solutions

k=3                                  6 solutions

kis bigger than 3               8 solutions

 Jan 27, 2022
edited by Melody  Jan 27, 2022

4 Online Users

avatar
avatar