+0  
 
0
714
2
avatar

x+14y=84

2x-7y= -7

 

Use substitution to solve for x. 

I keep trying this and I get 8.3333333...

My teacher says its wrong. 

What am I doing wrong?

How do I solve it? 

 Jan 8, 2016
 #1
avatar+1904 
0

\(x+14y=84\)

 

\(2x-7y=-7\)

 

In the first equation, solve for \(x\)

 

\(x-14y=84\)

 

add \(14y\) to both sides

 

\(x=84+14y\)

 

Now subsitute \(84+14y\) in the second equation where you see x

 

\(2(84+14y)-7y=-7\)

 

Distribute the \(2\)

 

\(168+28y-7y=-7\)

 

Now add \(28y\) and \(-7\) together

 

\(168+21y=-7\)

 

Now subtract \(168\) from both sides

 

\(21y=-175\)

 

Now divide \(21\) to both sides

 

\(y=\frac{-25}{3}\)

 

\(y=-\frac{25}{3}\)

 

In decimal form

 

\(y=-8.333333...\)

 Jan 8, 2016
 #2
avatar
0

Solve the following system:
{x+14 y = 84
2 x-7 y = -7

In the first equation, look to solve for x:
{x+14 y = 84
2 x-7 y = -7

Subtract 14 y from both sides:
{x = 84-14 y
2 x-7 y = -7

Substitute x = 84-14 y into the second equation:
{x = 84-14 y
2 (84-14 y)-7 y = -7

2 (84-14 y)-7 y = (168-28 y)-7 y = 168-35 y:
{x = 84-14 y
168-35 y = -7

In the second equation, look to solve for y:
{x = 84-14 y
168-35 y = -7

Subtract 168 from both sides:
{x = 84-14 y
-35 y = -175

Divide both sides by -35:
{x = 84-14 y
y = 5

Substitute y = 5 into the first equation:
Answer: | {x = 14    y = 5

 Jan 8, 2016

1 Online Users

avatar