+0  
 
0
39
6
avatar

 AB = 20 cm, the measure of A = 30 degrees, and the measure of C = 45 degrees. Express the number of centimeters in the length of BC in simplest radical form.

Any help would be greatly appreciated. angel

Guest Nov 20, 2018
 #1
avatar+14579 
0

Using law of sines

20/sin45 = BC/sin 30

sin30 * 20/sin45 = BC

1/2 * 20/(sqrt2/2) =

10 * 2/ sqrt2  20/ sqrt2 = 20 sqrt2/2 = 10 sqrt2

ElectricPavlov  Nov 20, 2018
edited by Guest  Nov 20, 2018
 #2
avatar
0

I'm sorry but that is wrong

Guest Nov 20, 2018
 #3
avatar+92814 
+1

We can use the Law of Sines, here

 

AB                 BC

_____    =    _____

sin C            sin A

 

 

20                  BC

_____   =      ____

sin 45           sin 30

 

 

20                     BC

______   =       ____

1 / √2               1/ 2

 

 

20√2  =  2BC        divide both sides by 2

 

20√2                              

____    =     BC     =       10√2

  2

 

 

 

cool cool cool

CPhill  Nov 20, 2018
 #4
avatar
0

Thank you so much!  Life saver! laugh

Guest Nov 20, 2018
 #5
avatar+92814 
0

Well.....I save a life when I can....

 

 

cool cool cool

CPhill  Nov 20, 2018
 #6
avatar+701 
+3

You probably saved a grade...laugh

PartialMathematician  Nov 21, 2018

15 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.