+0

0
207
6

AB = 20 cm, the measure of A = 30 degrees, and the measure of C = 45 degrees. Express the number of centimeters in the length of BC in simplest radical form.

Any help would be greatly appreciated.

Nov 20, 2018

#1
+19705
0

Using law of sines

20/sin45 = BC/sin 30

sin30 * 20/sin45 = BC

1/2 * 20/(sqrt2/2) =

10 * 2/ sqrt2  20/ sqrt2 = 20 sqrt2/2 = 10 sqrt2

Nov 20, 2018
edited by Guest  Nov 20, 2018
#2
0

I'm sorry but that is wrong

Nov 20, 2018
#3
+106515
+1

We can use the Law of Sines, here

AB                 BC

_____    =    _____

sin C            sin A

20                  BC

_____   =      ____

sin 45           sin 30

20                     BC

______   =       ____

1 / √2               1/ 2

20√2  =  2BC        divide both sides by 2

20√2

____    =     BC     =       10√2

2

Nov 20, 2018
#4
0

Thank you so much!  Life saver!

Nov 20, 2018
#5
+106515
0

Well.....I save a life when I can....

CPhill  Nov 20, 2018
#6
+700
0

You probably saved a grade...

Nov 21, 2018