+0  
 
0
123
1
avatar+217 

Given f(n)=1/(n+1)+1/(n+2)+...+1/(3n+1). When you want to prove the question using the mathematical induction method. For step 2, if n=k, you want to validate when n=k+1, then the relationship between f(k) and f(k+1) will be?

 

Thank you so much in advance!!

yasbib555  Jul 15, 2018
 #1
avatar+94092 
+1

I do not really understand your question, I think it is incomplete but perhaps you only want this part of it.

 

Given f(n)=1/(n+1)+1/(n+2)+...+1/(3n+1). When you want to prove the question using the mathematical induction method. For step 2, if n=k, you want to validate when n=k+1, then the relationship between f(k) and f(k+1) will be?

 

\(f(1)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\\ f(n)=\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}+ ....+\frac{1}{3n}+\frac{1}{3n+1}\\ f(k)=\frac{1}{k+1}+\frac{1}{k+2}+....+\frac{1}{2k}+ ....+\frac{1}{3k}+\frac{1}{3k+1}\\~\\ f(k+1)=\frac{1}{k+2}+.......\frac{1}{2k+2}+......\frac{1}{3k+3}+\frac{1}{3k+4}\\ f(k+1)=\frac{1}{k+2}+.....+\frac{1}{3k+1}+\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}\\ f(k+1)=\left[\frac{1}{k+2}+.....+\frac{1}{3k+1}\right]+\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}\\ f(k+1)=\left[f(k)-\frac{1}{k+1}\right]+\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}\\ f(k+1)=f(k)+\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}\\ \)

 

check:

\(f(1)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\\ f(2)=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\\ f(2)=f(1)+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{2}\)

 

Well that looks promising.  :)

Melody  Jul 15, 2018
edited by Melody  Jul 15, 2018

28 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.