+0  
 
0
689
2
avatar

Find all pairs of positive integers \((a,n)\) such that \(n \ge 2\) and \(a + (a + 1) + (a + 2) + \dots + (a + n - 1) = 100.\)

 

I would like a solid algebra solution not just guessing.

 May 4, 2018

Best Answer 

 #1
avatar+983 
+4

Hi Guest!

 

We can rewrite the left side of the equation,

 

using the arithmetic series sum formula:

 

\(S_n=\frac{n(a_1+a_n)}{2}\)

 

We get:

 

\(100=\frac{n(2a+n-1)}{2}\)

 

\(200=n(2a+n-1)\)

 

Hence, n must be a factor of 200.

 

 \( \begin{array}{c|c|c} n & 2a + n - 1 & a \\ \hline 2 & 100 & 99/2 \\ 4 & 50 & 47/2 \\ 5 & 40 & 18 \\ 8 & 25 & 9 \\ 10 & 20 & 11/2 \\ 20 & 10 & -9/2 \\ 25 & 8 & -8 \\ 40 & 5 & -17 \\ 50 & 4 & -45/2 \\ 100 & 2 & -97/2 \\ 200 & 1 & -99 \end{array} \ \)

 

Since a must be a positive integer, the solutions are \((a,n) = \boxed{(18,5)\text{ and }(9,8)}\)

 

I hope this helped,

 

Gavin

 May 4, 2018
edited by GYanggg  May 4, 2018
 #1
avatar+983 
+4
Best Answer

Hi Guest!

 

We can rewrite the left side of the equation,

 

using the arithmetic series sum formula:

 

\(S_n=\frac{n(a_1+a_n)}{2}\)

 

We get:

 

\(100=\frac{n(2a+n-1)}{2}\)

 

\(200=n(2a+n-1)\)

 

Hence, n must be a factor of 200.

 

 \( \begin{array}{c|c|c} n & 2a + n - 1 & a \\ \hline 2 & 100 & 99/2 \\ 4 & 50 & 47/2 \\ 5 & 40 & 18 \\ 8 & 25 & 9 \\ 10 & 20 & 11/2 \\ 20 & 10 & -9/2 \\ 25 & 8 & -8 \\ 40 & 5 & -17 \\ 50 & 4 & -45/2 \\ 100 & 2 & -97/2 \\ 200 & 1 & -99 \end{array} \ \)

 

Since a must be a positive integer, the solutions are \((a,n) = \boxed{(18,5)\text{ and }(9,8)}\)

 

I hope this helped,

 

Gavin

GYanggg May 4, 2018
edited by GYanggg  May 4, 2018
 #2
avatar
0

Thanks so much, I was looking desperatley for a way to do it without trial and error, but with two variables and one equation I guess that's unavoidable.

 May 4, 2018

1 Online Users