+0  
 
0
52
2
avatar

Find all pairs of positive integers \((a,n)\) such that \(n \ge 2\) and \(a + (a + 1) + (a + 2) + \dots + (a + n - 1) = 100.\)

 

I would like a solid algebra solution not just guessing.

Guest May 4, 2018

Best Answer 

 #1
avatar+660 
+4

Hi Guest!

 

We can rewrite the left side of the equation,

 

using the arithmetic series sum formula:

 

\(S_n=\frac{n(a_1+a_n)}{2}\)

 

We get:

 

\(100=\frac{n(2a+n-1)}{2}\)

 

\(200=n(2a+n-1)\)

 

Hence, n must be a factor of 200.

 

 \( \begin{array}{c|c|c} n & 2a + n - 1 & a \\ \hline 2 & 100 & 99/2 \\ 4 & 50 & 47/2 \\ 5 & 40 & 18 \\ 8 & 25 & 9 \\ 10 & 20 & 11/2 \\ 20 & 10 & -9/2 \\ 25 & 8 & -8 \\ 40 & 5 & -17 \\ 50 & 4 & -45/2 \\ 100 & 2 & -97/2 \\ 200 & 1 & -99 \end{array} \ \)

 

Since a must be a positive integer, the solutions are \((a,n) = \boxed{(18,5)\text{ and }(9,8)}\)

 

I hope this helped,

 

Gavin

GYanggg  May 4, 2018
edited by GYanggg  May 4, 2018
Sort: 

2+0 Answers

 #1
avatar+660 
+4
Best Answer

Hi Guest!

 

We can rewrite the left side of the equation,

 

using the arithmetic series sum formula:

 

\(S_n=\frac{n(a_1+a_n)}{2}\)

 

We get:

 

\(100=\frac{n(2a+n-1)}{2}\)

 

\(200=n(2a+n-1)\)

 

Hence, n must be a factor of 200.

 

 \( \begin{array}{c|c|c} n & 2a + n - 1 & a \\ \hline 2 & 100 & 99/2 \\ 4 & 50 & 47/2 \\ 5 & 40 & 18 \\ 8 & 25 & 9 \\ 10 & 20 & 11/2 \\ 20 & 10 & -9/2 \\ 25 & 8 & -8 \\ 40 & 5 & -17 \\ 50 & 4 & -45/2 \\ 100 & 2 & -97/2 \\ 200 & 1 & -99 \end{array} \ \)

 

Since a must be a positive integer, the solutions are \((a,n) = \boxed{(18,5)\text{ and }(9,8)}\)

 

I hope this helped,

 

Gavin

GYanggg  May 4, 2018
edited by GYanggg  May 4, 2018
 #2
avatar
0

Thanks so much, I was looking desperatley for a way to do it without trial and error, but with two variables and one equation I guess that's unavoidable.

Guest May 4, 2018

15 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy