+0  
 
0
148
2
avatar

Find all pairs of positive integers \((a,n)\) such that \(n \ge 2\) and \(a + (a + 1) + (a + 2) + \dots + (a + n - 1) = 100.\)

 

I would like a solid algebra solution not just guessing.

Guest May 4, 2018

Best Answer 

 #1
avatar+964 
+4

Hi Guest!

 

We can rewrite the left side of the equation,

 

using the arithmetic series sum formula:

 

\(S_n=\frac{n(a_1+a_n)}{2}\)

 

We get:

 

\(100=\frac{n(2a+n-1)}{2}\)

 

\(200=n(2a+n-1)\)

 

Hence, n must be a factor of 200.

 

 \( \begin{array}{c|c|c} n & 2a + n - 1 & a \\ \hline 2 & 100 & 99/2 \\ 4 & 50 & 47/2 \\ 5 & 40 & 18 \\ 8 & 25 & 9 \\ 10 & 20 & 11/2 \\ 20 & 10 & -9/2 \\ 25 & 8 & -8 \\ 40 & 5 & -17 \\ 50 & 4 & -45/2 \\ 100 & 2 & -97/2 \\ 200 & 1 & -99 \end{array} \ \)

 

Since a must be a positive integer, the solutions are \((a,n) = \boxed{(18,5)\text{ and }(9,8)}\)

 

I hope this helped,

 

Gavin

GYanggg  May 4, 2018
edited by GYanggg  May 4, 2018
 #1
avatar+964 
+4
Best Answer

Hi Guest!

 

We can rewrite the left side of the equation,

 

using the arithmetic series sum formula:

 

\(S_n=\frac{n(a_1+a_n)}{2}\)

 

We get:

 

\(100=\frac{n(2a+n-1)}{2}\)

 

\(200=n(2a+n-1)\)

 

Hence, n must be a factor of 200.

 

 \( \begin{array}{c|c|c} n & 2a + n - 1 & a \\ \hline 2 & 100 & 99/2 \\ 4 & 50 & 47/2 \\ 5 & 40 & 18 \\ 8 & 25 & 9 \\ 10 & 20 & 11/2 \\ 20 & 10 & -9/2 \\ 25 & 8 & -8 \\ 40 & 5 & -17 \\ 50 & 4 & -45/2 \\ 100 & 2 & -97/2 \\ 200 & 1 & -99 \end{array} \ \)

 

Since a must be a positive integer, the solutions are \((a,n) = \boxed{(18,5)\text{ and }(9,8)}\)

 

I hope this helped,

 

Gavin

GYanggg  May 4, 2018
edited by GYanggg  May 4, 2018
 #2
avatar
0

Thanks so much, I was looking desperatley for a way to do it without trial and error, but with two variables and one equation I guess that's unavoidable.

Guest May 4, 2018

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.