+0  
 
0
54
5
avatar

Suppose that ABCD is a trapezoid in which AD||BC. Given AC is perpendicular to CD, AC bisects angle BAD, and the area of ABCD is 42, then compute the area of triangle ACD.

 Jan 15, 2019
 #1
avatar+429 
0

i think your trapezoid is a parallelogram, so it would just be 42/2 = 21.

 

HOPE THIS HELPED!

 Jan 15, 2019
 #2
avatar+21358 
+6

Suppose that ABCD is a trapezoid in which AD||BC. 

Given AC is perpendicular to CD, AC bisects angle BAD, 

and the area of ABCD is 42, 

then compute the area of triangle ACD.

 

\(\text{Let $AB=a$ } \\ \text{Let $\angle BAC = \angle CAD = \alpha$ } \)

\(\text{Let $\angle ACB = \angle BAC = \alpha \qquad ( AD\parallel BC) $ } \)

 

sin - rule

\(\begin{array}{|rcll|} \hline \dfrac{ \sin(\angle BAC) } {BC} &=& \dfrac{ \sin(\angle ACB) } {AB} \\ \dfrac{ \sin(\alpha) } {BC} &=& \dfrac{ \sin(\alpha) } {AB} \\ BC &=& AB \quad & | \quad AB=a \\ & \boxed{BC = a} \\ \hline \end{array} \)

 

\(\text{Let $\angle ABC = 180^{\circ}-2\alpha $}\)

cos - rule

\(\begin{array}{|rcll|} \hline (AC)^2 &=& (BC)^2+(AB)^2-2\cdot BC \cdot AB \cdot \cos(180^{\circ}-2\alpha) \\ (AC)^2 &=& 2a^2+2a^2\cos( 2\alpha) \\ (AC)^2 &=& 2a^2(1+\cos(2\alpha)) \quad | \quad \cos( 2\alpha)=2\cos^2(\alpha)-1 \\ (AC)^2 &=& 2a^2\cdot ( 1+2\cos^2(\alpha)-1 ) \\ (AC)^2 &=& 2a^2\cdot 2\cos^2(\alpha) \\ (AC)^2 &=& 4a^2\cdot \cos^2(\alpha) \\ & & \boxed{ AC= 2a\cos(\alpha)} \quad | \quad \cos( \alpha)= \dfrac{AC}{AD} \\ AC &=& 2a\dfrac{AC}{AD} \\ 1 &=& \dfrac{2a}{AD} \\ & & \boxed{ AD= 2a } \\ \hline \end{array}\)

 

\(\mathbf{A_{\triangle} = \ ?} \)

\(\begin{array}{|rcll|} \hline A_{ABCD} &=& \left( \dfrac{AD+BC}{2} \right) \cdot h \quad | \quad AD= 2a,\quad BC = a \\ A_{ABCD} &=& \left( \dfrac{2a+a}{2} \right) \cdot h \\ A_{ABCD} &=& \dfrac{3}{2} a \cdot h \quad | \quad A_{ABCD}=42 \\ 42&=& \dfrac{3}{2} a \cdot h \\ a \cdot h &=& \mathbf{ \dfrac{2}{3} \cdot 42 } \\ \mathbf{a \cdot h} &\mathbf{=}& \mathbf{ 28 } \\\\ A_{\triangle} &=& \dfrac{AD\cdot h}{2} \quad | \quad AD= 2a \\ A_{\triangle} &=& \dfrac{2a\cdot h}{2} \\ A_{\triangle} &=& a\cdot h \quad | \quad a\cdot h = 28 \\ \mathbf{A_{\triangle}} &\mathbf{=}& \mathbf{ 28} \\ \hline \end{array}\)

 

The area of triangle ACD is 28.

 

laugh

 Jan 15, 2019
 #3
avatar+97599 
+2

It is nice to see you back again Heureka. 

And with another masterpeice of presentation to start the forum year  laugh

Melody  Jan 15, 2019
 #4
avatar+21358 
+7

Hello Melody,

a happy new year.

 

laugh

heureka  Jan 15, 2019
 #5
avatar+97599 
+1

Happy New Year to you too   laugh

Melody  Jan 16, 2019

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.