We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
151
1
avatar

Please help quick thank you so much please detailed solution thanks

 Feb 14, 2019
 #1
avatar+23073 
+5

Please help

 

 

I can't give you a detailed solution, but i give you the solution by wolfram alpha:

WolframAlpha: solve  y^2-zx = -103, z^2-xy = 22, x^2-yz > 81 over the positive integers

 

So \(x^2-yz = 14^2-3\cdot 8 = 172\)

 

How do i get this \( x^2-yz > 81\) ?

\(\begin{array}{|rcll|} \hline && (x^2-yz) + (y^2-zx) + (z^2-xy) \\ &=& x^2+y^2+z^2-yz-zx-xy \\\\ &=& \dfrac{1}{2}(2x^2+2y^2+2z^2-2yz-2zx-2xy) \\\\ &=& \dfrac{1}{2}\left( (x^2-2xy+y^2) + (y^2-2yz+z^2) + (z^2-2zx+x^2) \right) \\ &=& \dfrac{1}{2}\left( (x-y)^2 + (y-z)^2 + (z-x)^2 \right) \quad | \quad \text{this is always positive} \\\\ (x^2-yz) + (y^2-zx) + (z^2-xy) &>& 0 \\ (x^2-yz) -103 + 22 &>& 0 \\ (x^2-yz) -81 &>& 0 \\ \mathbf{x^2-yz} & \mathbf{>} & \mathbf{81} \\ \hline \end{array}\)

 

laugh

 Feb 14, 2019
edited by heureka  Feb 14, 2019

12 Online Users