We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
197
1
avatar

If x and y are positive integers such that 5x+3y=100, what is the greatest possible value of xy?

 Feb 25, 2019
 #1
avatar+23266 
+1

If x and y are positive integers such that 5x+3y=100,

what is the greatest possible value of xy?

 

\(\begin{array}{|rcll|} \hline 5x+3y &=& 100 \\ 3y &=& 100 - 5x \quad | \quad (3 < 5)! \\ y &=& \dfrac{100 - 5x} {3} \\ y &=& \dfrac{99+1-5x-x+x} {3} \\ y &=& \dfrac{99-6x+1+x} {3} \\ y &=& 33-2x+ \underbrace{\dfrac{1+x} {3}}_{=a} \\\\ a &=& \dfrac{1+x} {3}\\ 3a &=& 1+x \\ \mathbf{x} &\mathbf{=}& \mathbf{3a-1} \quad | \quad a \in \mathbb{Z} \\\\ y &=& 33-2x+ \dfrac{1+x} {3} \quad | \quad x = 3a-1 \\ y &=& 33-2(3a-1)+ \dfrac{1+3a-1} {3} \\ y &=& 33-6a+2+ \dfrac{3a} {3} \\ y &=& 33-6a+2+a \\ y &=& 35-5a \\ \mathbf{y} &\mathbf{=}& \mathbf{5(7-a)} \quad | \quad a \in \mathbb{Z} \\ \hline \end{array}\)

 

\(\begin{array}{|r|r|r|r|} \hline a & x=3a-1 & y=5(7-a) & xy & \text{max} \\ \hline 1 & 2 & 30 & 60 & \\ \hline 2 & 5 & 25 & 125 & \\ \hline 3 & 8 & 20 & 160 & \\ \hline 4 & 11 & 15 & 165 & \checkmark \\ \hline 5 & 14 & 10 & 140 & \\ \hline 6 & 17 & 5 & 85 & \\ \hline 7 & 20 & 0 & 0 & \\ \hline \end{array}\)

 

The greatest possible value of xy is 165.

 

laugh

 Feb 25, 2019

29 Online Users

avatar
avatar
avatar
avatar