+0  
 
-1
307
3
avatar

Divide: (4y^3+2y^2-3y-4)/y

 

Are the equations y=2x+5 and y=5x+2 consistent, inconsistent, or dependent.

 

Solver by factoring: x^2=x+20 The two possible solutions possible are in the form of x=a and x=b.  Evaluate a^2+b^2+a+b=

Guest Apr 26, 2017
 #1
avatar+280 
0

y=2x+5 and y=5x+2  , set them equal to zero, and you get? I cant tell what your question is

Veteran  Apr 26, 2017
 #2
avatar
0

is it Consistent? Sorry if I am wrong.  I am really bad at math!

Guest Apr 26, 2017
 #3
avatar+87294 
+2

 

 (4y^3+2y^2-3y-4) / y  =

 

(4y^3 / y)  + (2y^2 / y  - (3y) / y  - (4) / y  =

 

4y^2     + 2y     -    3      -     4 / y

 

 

y  = 2x + 5

y  = 5x + 2     

 

We have two lines with different slopes...........they will intersect at some point giving us one solution.....thus......this is a consistent system

 

 

x^2  = x + 20    rearrange as

 

x^2  - x - 20   = 0      fractor

 

(x - 5)  ( x + 4)  = 0

 

Setting both factors to 0 and solving for x, the two solutions are x = 5  and x  = -4

 

So    a^2  + b^2  +  a  +  b   =     (5)^2  + (-4)^2  + 5  +  - 4   =     42

 

 

 

cool cool cool

CPhill  Apr 26, 2017

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.