+0  
 
-1
1320
3
avatar

Divide: (4y^3+2y^2-3y-4)/y

 

Are the equations y=2x+5 and y=5x+2 consistent, inconsistent, or dependent.

 

Solver by factoring: x^2=x+20 The two possible solutions possible are in the form of x=a and x=b.  Evaluate a^2+b^2+a+b=

 Apr 26, 2017
 #1
avatar+280 
0

y=2x+5 and y=5x+2  , set them equal to zero, and you get? I cant tell what your question is

 Apr 26, 2017
 #2
avatar
0

is it Consistent? Sorry if I am wrong.  I am really bad at math!

Guest Apr 26, 2017
 #3
avatar+129918 
+2

 

 (4y^3+2y^2-3y-4) / y  =

 

(4y^3 / y)  + (2y^2 / y  - (3y) / y  - (4) / y  =

 

4y^2     + 2y     -    3      -     4 / y

 

 

y  = 2x + 5

y  = 5x + 2     

 

We have two lines with different slopes...........they will intersect at some point giving us one solution.....thus......this is a consistent system

 

 

x^2  = x + 20    rearrange as

 

x^2  - x - 20   = 0      fractor

 

(x - 5)  ( x + 4)  = 0

 

Setting both factors to 0 and solving for x, the two solutions are x = 5  and x  = -4

 

So    a^2  + b^2  +  a  +  b   =     (5)^2  + (-4)^2  + 5  +  - 4   =     42

 

 

 

cool cool cool

 Apr 26, 2017

0 Online Users