Processing math: 100%
 
+0  
 
+1
3118
4
avatar+9675 

The vertices of a square are the centers of four circles as shown above. Given each side of the square is 6cm and the radius of each circle is 23cm, find the area in square centimeters of the shaded region.

 Feb 1, 2019
edited by MaxWong  Feb 1, 2019
 #1
avatar+118696 
+3

The area of the whole square is 36

the area of tone quadrant =  0.25πr2=0.25π(23)2=3πcm2

 

Let the bottom of this diagram be the x- axis. 

and  (0,0) is at the bottom left corner then the equation of the bottom left quadrant is 

 

x2+y2=12y2=12x2y=12x2

 

The area of the blue/ green overlap is

 

A=223312x2dx=2[0.5x12x2+6asin(x23)]233Wolfram|Alpha=2[0.5(23)0+6asin(1)]2[1.53+6asin(323)]=2[6π2]2[1.53+6asin(32)]=6π2[1.53+6π3)]=6π2[1.53+2π)]=6π334π=2π33

 

So the desired area in the middle is

 

middlearea=36[π(23)24(2π33)]middlearea=36[12π8π+123)]middlearea=36[4π+123)]middlearea=361234πcm2middlearea2.65cm2

 

 

 Feb 1, 2019
 #2
avatar+130466 
+3

Thanks, Melody...

 

Here's another way without using Calculus

 

Positioning the circles as Melody did :

 

 

The intersection of two circles at the left side of the figure occurs at  A =    (sqrt(3) , 3)

Similarly, the intersection of the two circles at the bottom occurs at ( 3, sqrt (3) )

So  the distance between these two points is  AD =   sqrt [ 24 - 12 sqrt (3) ] cm

Therefore...using symmetry....we can construct  a square  AFGD of this side with an area of  [ 24 - 12sqrt(3)] cm^2     (1)

 

Looking at the segment AE... the slope of this segment = 3/sqrt (3) = sqrt (3)

Looking at the slope of DE....the slope of this segment is sqrt (3) / 3 =  1 / sqrt (3)

 

So   arctan (sqrt (3) ) - arctan (1/sqrt(3) ) =  60° - 30°   =   angle AED = 30°

 

So  the area of sector AED is  (1/2)(12)(pi/6)  =   pi  cm^2

And the area of triangle AED = (1/2)(12)sin(30)  = 3 cm^2

So....the area between the sector and the triangle is  [pi - 3] cm^2

And  using symmetry....4 of these areas = [4pi -12] cm^2      (2)

So....the shaded area is  (1) - (2) =

[ 24 - 12sqrt (3)] - [ 4pi - 12 ] cm^2  =   [ 36 - 12sqrt (3) - 4pi] cm^2  (exact)   ≈ 2.65 cm^2  (rounded)

 

 

cool cool cool

 Feb 1, 2019
edited by CPhill  Feb 1, 2019
edited by CPhill  Feb 1, 2019
 #3
avatar+118696 
+2

Very nice Chris I like your method better. :)

Melody  Feb 1, 2019
 #4
avatar+130466 
+2

THX....!!!!

 

[ It does avoid that nasty integral...LOL !!!   ]

 

 

cool cool cool

CPhill  Feb 2, 2019

3 Online Users

avatar