+0  
 
0
143
1
avatar

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 Jul 11, 2018

Best Answer 

 #1
avatar+21848 
+1

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 

 

\(\begin{array}{|rcll|} \hline (x-3)^2+(x-8)^2 &=& 0 \\ x^2-6x+9-x^2+16x-64 &=& 0 \\ 10x +9 - 64 &=& 0 \\ 10x - 55 &=& 0 \\ 10x &=& 55 \\ \mathbf{x}& \mathbf{=} & \mathbf{5.5} \\ \hline \end{array}\)

 

The smallest real number x in the domain of the function is 5.5

 

 

laugh

 Jul 11, 2018
 #1
avatar+21848 
+1
Best Answer

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 

 

\(\begin{array}{|rcll|} \hline (x-3)^2+(x-8)^2 &=& 0 \\ x^2-6x+9-x^2+16x-64 &=& 0 \\ 10x +9 - 64 &=& 0 \\ 10x - 55 &=& 0 \\ 10x &=& 55 \\ \mathbf{x}& \mathbf{=} & \mathbf{5.5} \\ \hline \end{array}\)

 

The smallest real number x in the domain of the function is 5.5

 

 

laugh

heureka Jul 11, 2018

14 Online Users

avatar
avatar