We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
180
1
avatar

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 Jul 11, 2018

Best Answer 

 #1
avatar+22343 
+1

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 

 

\(\begin{array}{|rcll|} \hline (x-3)^2+(x-8)^2 &=& 0 \\ x^2-6x+9-x^2+16x-64 &=& 0 \\ 10x +9 - 64 &=& 0 \\ 10x - 55 &=& 0 \\ 10x &=& 55 \\ \mathbf{x}& \mathbf{=} & \mathbf{5.5} \\ \hline \end{array}\)

 

The smallest real number x in the domain of the function is 5.5

 

 

laugh

 Jul 11, 2018
 #1
avatar+22343 
+1
Best Answer

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 

 

\(\begin{array}{|rcll|} \hline (x-3)^2+(x-8)^2 &=& 0 \\ x^2-6x+9-x^2+16x-64 &=& 0 \\ 10x +9 - 64 &=& 0 \\ 10x - 55 &=& 0 \\ 10x &=& 55 \\ \mathbf{x}& \mathbf{=} & \mathbf{5.5} \\ \hline \end{array}\)

 

The smallest real number x in the domain of the function is 5.5

 

 

laugh

heureka Jul 11, 2018

21 Online Users

avatar
avatar