+0  
 
0
49
1
avatar

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 
Guest Jul 11, 2018

Best Answer 

 #1
avatar+19636 
+1

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 

 

\(\begin{array}{|rcll|} \hline (x-3)^2+(x-8)^2 &=& 0 \\ x^2-6x+9-x^2+16x-64 &=& 0 \\ 10x +9 - 64 &=& 0 \\ 10x - 55 &=& 0 \\ 10x &=& 55 \\ \mathbf{x}& \mathbf{=} & \mathbf{5.5} \\ \hline \end{array}\)

 

The smallest real number x in the domain of the function is 5.5

 

 

laugh

 
heureka  Jul 11, 2018
 #1
avatar+19636 
+1
Best Answer

What is the smallest real number $x$ in the domain of the function $$g(x) = \sqrt{(x-3)^2-(x-8)^2}~?$$

 

 

\(\begin{array}{|rcll|} \hline (x-3)^2+(x-8)^2 &=& 0 \\ x^2-6x+9-x^2+16x-64 &=& 0 \\ 10x +9 - 64 &=& 0 \\ 10x - 55 &=& 0 \\ 10x &=& 55 \\ \mathbf{x}& \mathbf{=} & \mathbf{5.5} \\ \hline \end{array}\)

 

The smallest real number x in the domain of the function is 5.5

 

 

laugh

 
heureka  Jul 11, 2018

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.