+0  
 
0
83
3
avatar

Find all complex numbers $z$ such that $z^4 = -4.$

 Dec 17, 2019
 #1
avatar
0

https://web2.0calc.com/questions/math-question_145

 Dec 17, 2019
 #2
avatar
+1

Let's make the solution super-formal!  We can write -4 in exponential notation as 4e^(pi*i), so the equation is z^4 = 4e^(pi*i).

 

By Hamilton's Theorem, the solutions are z = 4^{1/4}*e^(pi*i/4), 4^{1/4}*e^(pi*i/4 + pi/4), 4^{1/4}*e^(pi*i/4 + 2*pi/4), and 4^{1/4}*e^(pi*i/4 + 3*pi/4).  Since 4^{1/4} = sqrt(2) and e^(pi*i/4) = (1 + i)/sqrt(2), the first solution is 1 + i.  Then the other roots work out as

 

4^{1/4}*e^(pi*i/4 + pi/4) = 1 - i,

4^{1/4}*e^(pi*i/4 + 2*pi/4) = -1 - i, and

4^{1/4}*e^(pi*i/4 + 3*pi/4) = -1 + i.

 Dec 17, 2019
 #3
avatar
0

Thanks that helps alot.

 Dec 17, 2019

26 Online Users

avatar
avatar