+0  
 
0
51
5
avatar+1857 

I dont understand this >.<

EDIT: Synthetic division only 

RainbowPanda  Sep 19, 2018
edited by RainbowPanda  Sep 19, 2018
 #1
avatar+90023 
+2

This type is a little tricky, RP......

 

When the divisor  is in the linear form    ax + b     [ or  ma + b, in this case ....since  "a" is the variable ] we need to be careful about the residual polynomial...the remainder will be correct, however

 

Set  6a + 8  = 0   ⇒   a  =  -4/3....this is what we need to divide by

 

 

-4/3  [ 6     - 4   - 76       - 44    - 6      - 63   ]

                 -8      16         80     -48       72   

       _______________________________

         6    -12     - 60        36    -54         9

 

The correct remainder is 9

 

Here is where synthetic division fails to produce the correct residual polynomial.....the resulting polynomial  appears  to be :

 

6a^4 - 12 a^3  - 60a^2  + 36a  -  54

 

However....note that if we  performed the "normal" polynomial division....the first term would be......a^4

 

                 a^4

6a + 8   [ 6a^5

              -(6a^5)   ......

 

 

So...this means that we need to divide every co-efficient of the apparent residual polynomial by 6  to get the correct answer

 

So...the residual polynomial is

 

a^4  - 2a^3  - 10a^2  + 6a  - 9  R [ 9/ (6a + 8) ] 

 

Do you see this  ??

 

 

cool cool cool

CPhill  Sep 19, 2018
 #2
avatar+1857 
+1

Ah somewhat..still a bit confusing though and I have 4 more of these to do. >.<

RainbowPanda  Sep 19, 2018
 #3
avatar+90023 
+1

OK..post them...I'll see what I can help with....this is a little confusing  !!

 

However...if you are just concerned with the correct remainder....we don't have to worry about the residual polynomial.....are you just being asked for the remainder  ???

 

 

cool cool cool

CPhill  Sep 19, 2018
edited by CPhill  Sep 19, 2018
 #4
avatar+1857 
+1

It just says divide "Synthetic division" 

RainbowPanda  Sep 19, 2018
 #5
avatar+90023 
+2

OK.....we'll carry it through....

 

 

 

cool cool cool

CPhill  Sep 19, 2018

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.