We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
57
4
avatar

Let \(z\) and \(w\) be complex numbers satisfying \(|z| = 5, |w| = 2,\) and \(z\overline{w} = 6+8i.\) Then enter in the numbers \(|z+w|^2, |zw|^2, |z-w|^2, \left| \dfrac{z}{w} \right|^2 \), in the order listed above.

 

 

 

Thanks!!

 Apr 12, 2019
 #1
avatar+27847 
+3

 

\(\text{Let } z=a+bi\text{ and }w=c+di\\\text{Then }|z|=\sqrt{a^2+b^2}\text{, }|w|=\sqrt{c^2+d^2} \text{ and }z\bar w=(a+bi)(c-di)=ac+bd+(bc-ad)i\)

 

\(\text{Hence }a^2+b^2=5^2,ac+bd=6,c^2+d^2=2^2,bc-ad=8\)

 

(1)

  \(|z+w|=|a+c+(b+d)i|=\sqrt{a^2+c^2+2ac+b^2+d^2+2bd}=\sqrt{a^2+b^2+c^2+d^2+2(ac+bd)}\\=\sqrt{5^2+2^2+2\times6}=\sqrt{41}\\\text{So }|z+w|^2=41\)

 

 

See if you can do the rest using a similar approach.  

 Apr 12, 2019
edited by Alan  Apr 12, 2019
 #2
avatar
0

I am able to do all of them except the third one. Can you help me on that as well? 

 

Thanks!!

 Apr 13, 2019
 #3
avatar
0

anyone?

 Apr 13, 2019
 #4
avatar+27847 
+2

Not sure which you meant by the third (including or excluding the one I did!), so:

 

 Apr 14, 2019

12 Online Users

avatar
avatar
avatar
avatar