+0  
 
0
44
2
avatar

https://web2.0calc.com/questions/function-help_4

Guest Jul 16, 2018
 #1
avatar+19813 
+1

1. Let $f(x) = Ax - 2B^2$ and $g(x) = Bx$, where $B \neq 0$. If $f(g(1)) = 0$, what is $A$ in terms of $B$?

2. Suppose that $f$ is a function and $f^{-1}$ is the inverse of $f$. If $f(1)=2$, $f(2) = 6$, and $f(3)=5$, then what is $f^{-1}(f^{-1}(6))$?

 

 

\(\begin{array}{|lrcll|} \hline x = 1 : & g(x) &=& g(1) \\ & g(1) &=& B\cdot 1 \\ & g(1) &=& B \\\\ & f(g(1)) &=& f(B) \\ x=B: & f(B) &=& A\cdot B - 2B^2 \\ f(B) = 0: & A\cdot B - 2B^2 &=& 0 \\ & A\cdot B&=& 2B^2 \\ & A &=& \dfrac{2B^2}{B} \quad & | \quad B \ne 0~ ! \\ &\mathbf{ A }& \mathbf{=}& \mathbf{ 2B } \\ \hline \end{array} \)

 

laugh

heureka  Jul 17, 2018
 #2
avatar+19813 
+1

1. Let $f(x) = Ax - 2B^2$ and $g(x) = Bx$, where $B \neq 0$. If $f(g(1)) = 0$, what is $A$ in terms of $B$?
2. Suppose that $f$ is a function and $f^{-1}$ is the inverse of $f$. If $f(1)=2$, $f(2) = 6$, and $f(3)=5$, then what is $f^{-1}(f^{-1}(6))$?

 

 

\(\begin{array}{|r|r|r|r|} \hline x & f(x) \\ \hline 1 & 2 & f(1) = 2 & f^{-1}(2) = 1 \\ 2 & 6 & f(2) = 6 & f^{-1}(6) = 2 \\ 3 & 5 & f(3) = 5 & f^{-1}(5) = 3 \\ \hline f^{-1}(x) & x \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline f^{-1}(6) &=& 2 \\ f^{-1}(f^{-1}(6)) &=& f^{-1}(2) \\ &=& 1 \\\\ \mathbf{f^{-1}(f^{-1}(6))}& \mathbf{=}& \mathbf{1} \\ \hline \end{array}\)

 

laugh

heureka  Jul 17, 2018

16 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.