+0  
 
0
192
2
avatar+4 

Work along with the answer included is much appreciated! Thx CPhill you’re the best

 Aug 6, 2018
 #1
avatar
+1

In triangle HAC, using Pythagoras's Theorem, the hypotenuse HC =Sqrt(8)

In triangle AHX, using Pythagoras's Theorem, HX=Sqrt(2)

In triangle BCY, using Pythagoras's Theorem, CY=1/sqrt(2)

 

Therefore, XY =HC - HX - CY =XY =sqrt(8) - sqrt(2) - 1/sqrt(2) =1/sqrt(2) =WZ

By similar reasoning, XW=YZ = 1/sqrt(2)

 

Therefore, the area of the quadrilateral WXYZ =[1/sqrt(2)]^2 =1/2

 Aug 6, 2018
 #2
avatar+21819 
+2

Please help with this geometry question

 

In rectangle \(ADEH\), points B and C trisect \(\overline{AD}\),
and points G and F trisect \(\overline{HE}\).
In addition, \(\overline{AH}=\overline{AC}=2\).
What is the area of quadrilateral \(WXYZ\) ?

 

\(\text{Let $\overline{AH}=\overline{AC}=2$ } \\ \text{Let $\overline{AB}=\overline{BC}=\dfrac{\overline{AC}}{2} = 1$ } \\ \text{Let $\overline{AB}=\overline{XZ} = 1$ } \\ \text{Let $\overline{BX}=\dfrac{\overline{AH}}{2} = 1$ } \)

 

\(\text{Let triangle $XWZ = $ triangle $BYC$ } \)

 

\(\begin{array}{|rcll|} \hline \mathbf{A_{\text{quadrilateral } WXYZ}} &\mathbf{=} & \mathbf{ A_{XWZ} + A_{XYZ} } \quad | \quad A_{XWZ} = A_{BYC} \\\\ &=& A_{BYC} + A_{XYZ} \quad | \quad A_{BYC} =\dfrac{\overline{BC}\cdot x}{2} \quad A_{XYZ} =\dfrac{\overline{XZ}\cdot (1-x)}{2} \\\\ &=& \dfrac{\overline{BC}\cdot x}{2} + \dfrac{\overline{XZ}\cdot (1-x)}{2} \quad | \quad \overline{BC}=\overline{XZ}=1 \quad \\\\ &=& \dfrac{x}{2} + \dfrac{1-x}{2} \\\\ &=& \dfrac{x+1-x}{2} \\\\ &\mathbf{=} & \mathbf{ \dfrac{1}{2} } \\ \hline \end{array}\)

 

laugh

 Aug 6, 2018
edited by heureka  Aug 6, 2018
edited by heureka  Aug 6, 2018
edited by heureka  Aug 6, 2018

34 Online Users

avatar
avatar
avatar
avatar
avatar
avatar