+0  
 
0
53
2
avatar+4 

Work along with the answer included is much appreciated! Thx CPhill you’re the best

Unstoppable001  Aug 6, 2018
 #1
avatar
+1

In triangle HAC, using Pythagoras's Theorem, the hypotenuse HC =Sqrt(8)

In triangle AHX, using Pythagoras's Theorem, HX=Sqrt(2)

In triangle BCY, using Pythagoras's Theorem, CY=1/sqrt(2)

 

Therefore, XY =HC - HX - CY =XY =sqrt(8) - sqrt(2) - 1/sqrt(2) =1/sqrt(2) =WZ

By similar reasoning, XW=YZ = 1/sqrt(2)

 

Therefore, the area of the quadrilateral WXYZ =[1/sqrt(2)]^2 =1/2

Guest Aug 6, 2018
 #2
avatar+19992 
+2

Please help with this geometry question

 

In rectangle \(ADEH\), points B and C trisect \(\overline{AD}\),
and points G and F trisect \(\overline{HE}\).
In addition, \(\overline{AH}=\overline{AC}=2\).
What is the area of quadrilateral \(WXYZ\) ?

 

\(\text{Let $\overline{AH}=\overline{AC}=2$ } \\ \text{Let $\overline{AB}=\overline{BC}=\dfrac{\overline{AC}}{2} = 1$ } \\ \text{Let $\overline{AB}=\overline{XZ} = 1$ } \\ \text{Let $\overline{BX}=\dfrac{\overline{AH}}{2} = 1$ } \)

 

\(\text{Let triangle $XWZ = $ triangle $BYC$ } \)

 

\(\begin{array}{|rcll|} \hline \mathbf{A_{\text{quadrilateral } WXYZ}} &\mathbf{=} & \mathbf{ A_{XWZ} + A_{XYZ} } \quad | \quad A_{XWZ} = A_{BYC} \\\\ &=& A_{BYC} + A_{XYZ} \quad | \quad A_{BYC} =\dfrac{\overline{BC}\cdot x}{2} \quad A_{XYZ} =\dfrac{\overline{XZ}\cdot (1-x)}{2} \\\\ &=& \dfrac{\overline{BC}\cdot x}{2} + \dfrac{\overline{XZ}\cdot (1-x)}{2} \quad | \quad \overline{BC}=\overline{XZ}=1 \quad \\\\ &=& \dfrac{x}{2} + \dfrac{1-x}{2} \\\\ &=& \dfrac{x+1-x}{2} \\\\ &\mathbf{=} & \mathbf{ \dfrac{1}{2} } \\ \hline \end{array}\)

 

laugh

heureka  Aug 6, 2018
edited by heureka  Aug 6, 2018
edited by heureka  Aug 6, 2018
edited by heureka  Aug 6, 2018

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.