We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
117
1
avatar

Let z be a complex number such that |z| = 1. Find the largest possible value of |z^2 + z - 1|.

 Apr 16, 2019
 #1
avatar+6043 
+1

\(|z|=1 \Rightarrow z = \cos(x)+i\sin(x)\\ z^2 + z -1 = -\sin ^2(x)+\cos ^2(x)+\cos (x)-1 +i (\sin (x)+2 \sin (x) \cos (x))\\ |z^2 + z - 1|^2 =3-2 \cos (2 x) \text{ (after much simplification) }\\ \dfrac{d}{dx} |z^2 + z - 1|^2 = 4\sin(2x)=0 \Rightarrow x = \dfrac{(2k+1)\pi}{2},~k \in \mathbb{Z}\\ \text{Thus }z = \pm i \text{ and the max value of } |z^2 + z - 1|^2 = 5 \text{ so the max value of }\\ |z^2 + z - 1| = \sqrt{5}\)

.
 Apr 16, 2019

31 Online Users