+0  
 
0
106
2
avatar

Suppose that there are 15 antennas in a store, of which 3 are defective. Assume all the defectives and all the functional antennas are indistinguishable. If we lay all the antennas down in a row, how many linear orderings are there in which no two defectives are consecutive?

 Mar 3, 2020
 #1
avatar+111435 
+1

1 2 3

...

13 14  15       =   13    orderings where  all 3  are together

 

1 2     

....

14  15

 

There  are  14  positions where   any   two  are  together  and  for any of these   the other  defective  could occupy  any  one of 12 positions

 

So......the number of orderings where  2  are together   =   14 * 12   =   168

 

The total  number of  identifiable orderings  =   15! / [ 3! * 12! ] =   455

 

So....the  number of orderings  wher  no two  defectives are  together  = 

 

Total identifiable  orderings  - orderings where  all three are  together  - orderings where  two are  together  =

 

455    -13  - 168   =

 

274

 

 

cool cool cool

 Mar 3, 2020
 #2
avatar
0

Sorry that is not the correct answer

Guest Mar 3, 2020

14 Online Users

avatar