We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
29
3
avatar

Find the distance between \(Q = (3, -7, -1)\) and the line through \(A = (1, 1, 2)\) and \(B = (2, 3, 4).\) This distance is equal to \(\dfrac{\sqrt{d}}{3}\)
for some integer \(d\). What is \(d\)?

 Nov 8, 2019
 #1
avatar
+1

The distance is sqrt(30)/3, so d = 30.

 Nov 9, 2019
 #2
avatar+2391 
+1

How did you get 30?
 

What are the steps involved?

CalculatorUser  Nov 9, 2019
 #3
avatar+104933 
+1

We can find the  direction vector, AB  =  s ,  of the line thusly

 

( 2 - 1, 3 - 1, 4 - 2)   =  ( 1, 2,  2)  = s

 

Next....find the vector  QA  =  ( 1 - 3, 1  - - 7, 2 - - 1)  =  ( -2, 8, 3)

 

Next.....form the cross product  of    QA  x s  =

 

i      j       k       i      j

-2   8      3      - 2   8     =

1    2      2      1     2

 

[ i * 8 * 2  + j * 3 * 1 + k * -2 * 2]  -  [ k * 8 * 1 + i * 3 * 2  + j * - 2 * 2 ]  =

 

[ 16i  + 3j - 4k] - [ 8k + 6i - 4j]  =

 

10i + 7j  - 12 k   

 

The distance   =

 

Length  of   [QA x s]

_________________   =

Length  of   [ s ]

 

 

√ [ 10^2 + 7^2 + (-12)^2  ]                 √ 293         √ 293

_______________________   =     _______  =  ______  

√ [ 1^2 + 2^2 + 2^2 ]                           √9                 3

 

So  d  = 293

 

 

cool cool cool

 Nov 9, 2019

35 Online Users

avatar