We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
57
1
avatar

An infinite geometric series has first term -3/2 and sums to twice the common ratio. Find the sum of all possible values for the common ratio.

 Jul 23, 2019
 #1
avatar+22896 
+2

An infinite geometric series has first term -3/2 and sums to twice the common ratio.

Find the sum of all possible values for the common ratio.

 

\(\text{Let $a_1=a=-\dfrac{3}{2} $} \\ \text{Let the common ratio $=r$} \\ \text{Let the sum of the infinite geometric series $= \dfrac{a}{1-r} $ } \)

 

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{a}{1-r}} &=& \mathbf{2r} \\\\ a &=& 2r(1-r) \\ a &=& 2r-2r^2 \\ 2r^2-2r+a &=& 0 \quad &|\quad a = -\dfrac{3}{2} \\ 2r^2-2r-\dfrac{3}{2} &=& 0 \quad &|\quad \cdot 2 \\ 4r^2-4r-3 &=& 0 \\\\ r &=& \dfrac{4\pm \sqrt{4^2-4\cdot 4\cdot (-3)} }{2\cdot 4} \\ &=& \dfrac{4\pm \sqrt{4^2+4^2\cdot 3} }{2\cdot 4} \\ &=& \dfrac{4\pm \sqrt{4^2\cdot 4} }{2\cdot 4} \\ &=& \dfrac{4\pm 4\cdot 2 }{2\cdot 4} \\ &=& \dfrac{1\pm 2 }{2} \\\\ r_1 &=& \dfrac{1+ 2 }{2} \\ \mathbf{ r_1 } &=& \mathbf{ \dfrac{3}{2} } \\\\ r_2 &=& \dfrac{1- 2 }{2} \\ \mathbf{ r_2 } &=& \mathbf{ -\dfrac{1}{2} } \\ \hline \end{array} \)

 

The sum of all possible values for the common ratio \(\dfrac{3}{2}-\dfrac{1}{2} = \mathbf{1}\)

 

laugh

 Jul 23, 2019

17 Online Users

avatar
avatar