We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
121
1
avatar

Let $f(x) = (x+2)^2-5$. If the domain of $f$ is all real numbers, then $f$ does not have an inverse function, but if we restrict the domain of $f$ to an interval $[c,\infty)$, then $f$ may have an inverse function. What is the smallest value of $c$ we can use here, so that $f$ does have an inverse function?

 Aug 17, 2019
 #1
avatar+23273 
+1

Let\( f(x) = (x+2)^2-5\).
If the domain of \(f\) is all real numbers,
then \(f\) does not have an inverse function,
but if we restrict the domain of \(f\) to an interval \([c,\infty)\),
then \(f\) may have an inverse function.
What is the smallest value of \(c\) we can use here,
so that \(f\) does have an inverse function?

 

\(\begin{array}{|rcll|} \hline \mathbf{f(x)} &=& \mathbf{(x+2)^2-5} \\ \\ x &=& \Big(f^{-1}(x)+2\Big)^2-5 \quad | \quad \text{inverse function} \\ x+5 &=& \Big(f^{-1}(x)+2\Big)^2 \\ \Big(f^{-1}(x)+2\Big)^2 &=& x+5 \\ f^{-1}(x)+2 &=& \pm\sqrt{x+5} \\ \mathbf{f^{-1}(x)} &=& \mathbf{-2 \pm\sqrt{x+5}} \\ \hline \\ \sqrt{x+5} &=& 0 \quad | \quad \text{the smallest value of }x \text{ is } c \\ x+5 &=& 0 \\ x &=& -5 \quad | \quad \text{the smallest value is } -5 \\ \\ \hline \mathbf{[c,\infty)} &=& \mathbf{[-5,\infty)} \\ \hline \end{array}\)

 

laugh

 Aug 18, 2019
edited by heureka  Aug 19, 2019

27 Online Users

avatar