Let a, b, c be positive real numbers such that \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1.\)Simplify \(\left( 1 + \frac{a}{b} \right) \left( 1 + \frac{b}{c} \right) \left( 1 + \frac{c}{a} \right) \left( \frac{1}{a + bc} + \frac{1}{b + ac} + \frac{1}{c + ab} \right).\)

Guest Sep 8, 2019

#1**0 **

To be honest, you can let a = 2, b = 3, and c = 6 and solve from there.

\((1+\frac{2}{3})(1+\frac{3}{6})(1+\frac{6}{2})(\frac{1}{2+3\times 6}+\frac{1}{3+2\times 6}+\frac{1}{6+2\times 3})\)

\((\frac{5}{3})(\frac{3}{2})(4)(\frac{1}{20}+\frac{1}{15}+\frac{1}{12})\)

\(10\times 0.2 = 2\).

You are very welcome!

:P

CoolStuffYT Sep 11, 2019