+0  
 
0
35
2
avatar+119 

 

How many ways are there to put 6 balls in 3 boxes if the balls are not distinguishable but the boxes are?

 

I got 7, but I wanted to check.

ANotSmartPerson  Oct 25, 2018
 #1
avatar+2742 
+3

I'm seeing 28

 

\(\dbinom{6+3-1}{3-1} = \dbinom{8}{2} = 28\)

 

\(\left( \begin{array}{ccc} 6 & 0 & 0 \\ 5 & 1 & 0 \\ 5 & 0 & 1 \\ 4 & 2 & 0 \\ 4 & 1 & 1 \\ 4 & 0 & 2 \\ 3 & 3 & 0 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \\ 3 & 0 & 3 \\ 2 & 4 & 0 \\ 2 & 3 & 1 \\ 2 & 2 & 2 \\ 2 & 1 & 3 \\ 2 & 0 & 4 \\ 1 & 5 & 0 \\ 1 & 4 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 3 \\ 1 & 1 & 4 \\ 1 & 0 & 5 \\ 0 & 6 & 0 \\ 0 & 5 & 1 \\ 0 & 4 & 2 \\ 0 & 3 & 3 \\ 0 & 2 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 6 \\ \end{array} \right)\)

Rom  Oct 26, 2018
edited by Rom  Oct 26, 2018
 #2
avatar+119 
+1

Thank You!

ANotSmartPerson  Oct 26, 2018

28 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.