We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

The graphs of a function \(f(x)=3x+b\) and its inverse function \(f^{-1}(x)\) intersect at the point \((-3,a)\). Given that \(b\) and \(a\) are both integers, what is the value of \(a\)?

Guest Feb 17, 2019

#1**+1 **

\(\text{if }v=f(u) \text{ then } u = f^{-1}(v) \text{ in other words}\\ \text{if }(u,v) \text{ is a point on }f(u) \text{ then }(v,u) \text{ must be a point on }f^{-1}(v)\\ \text{thus if these two points are identical}\\ (u,v)=(v,u) \Rightarrow u=v\)

\(\text{so if }(-3,a) \text{ is on the graph of }f(x)\\ (a,-3) \text{ is on the graph of }f^{-1}(x) \\ \text{and if they coincide then }a=-3\)

.Rom Feb 17, 2019