We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
120
1
avatar

The graphs of a function \(f(x)=3x+b\) and its inverse function \(f^{-1}(x)\) intersect at the point \((-3,a)\). Given that \(b\) and \(a\) are both integers, what is the value of \(a\)?

 Feb 17, 2019
 #1
avatar+5770 
+1

\(\text{if }v=f(u) \text{ then } u = f^{-1}(v) \text{ in other words}\\ \text{if }(u,v) \text{ is a point on }f(u) \text{ then }(v,u) \text{ must be a point on }f^{-1}(v)\\ \text{thus if these two points are identical}\\ (u,v)=(v,u) \Rightarrow u=v\)

 

\(\text{so if }(-3,a) \text{ is on the graph of }f(x)\\ (a,-3) \text{ is on the graph of }f^{-1}(x) \\ \text{and if they coincide then }a=-3\)

.
 Feb 17, 2019

44 Online Users

avatar
avatar