+0  
 
0
166
1
avatar

If the height of an equilateral triangle is also a root of the equation y^4-3y^2-270,

then the area of the triangle, in cm^2, is

Guest Jan 10, 2018
 #1
avatar+91099 
+2

 y^4 - 3y^2 - 270  =  0       factor

 

( y^2  - 18) (y^2  + 15)  =  0

 

Only the first factor  provides the real solution  of   y  =  √18 cm  =  height of the triangle

 

And...since the altitude of this triangle  sets up a 30-60-90 triangle, the side of the equilateral triangle  =  2√18 / √3  =   2√6  =  √24 cm

 

So....the area  of this  triangle  is  =

 

(1/2)base * height  =

 

(1/2)√24 * √18

 

(1/2) 2√6 * 3√2  =

 

3√12   =

 

6 √3  cm ^ 2

 

 

 

 

cool cool cool

CPhill  Jan 10, 2018

22 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.