+0  
 
0
189
5
avatar

If $x$ is an element of the set $\{ -1, 1, 2 \}$ and $y$ is an element of $\{ -2, -1, 0, 1, 2 \}$, how many distinct values of $x^y$ are positive?

 Feb 11, 2019
 #1
avatar
0

In accordance with my calculations the distinctions values availbles are in the $ $ $ root $ so -654965396 is the value to be positibe.

 

Hope it help

 

Have yourself a good day.

 

Bye

 Feb 11, 2019
 #2
avatar+111328 
+1

x= { -1, 1, 2 } and y = { -2, -1, 0, 1, 2 }

 

 

The positive ones are

 

(-1)^(-2)    =   1         (1)^(-2) = 1           (2)^(-2) = 1/4

(-1)^0     =  1             (1)^(-1) = 1           (2)^(-1) = 1/2

(-1)^2     =1               (1)^(0) = 1            (2)^(0) =  1

                                 (1)^(1) = 1             (2)^(1) = 2

                                 (1)^(2) = 1             (2)^(2) = 4

 

There are  5  distinct values

 

 

cool cool cool

 Feb 11, 2019
 #3
avatar
0

NO! You are WRONG.

 

GET OUT!

Guest Feb 11, 2019
 #4
avatar
0

TRASH KID

Guest Feb 11, 2019
 #5
avatar
0

Hi

 

happy days

Guest Feb 11, 2019

11 Online Users

avatar
avatar