We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
54
5
avatar

If $x$ is an element of the set $\{ -1, 1, 2 \}$ and $y$ is an element of $\{ -2, -1, 0, 1, 2 \}$, how many distinct values of $x^y$ are positive?

 Feb 11, 2019
 #1
avatar
0

In accordance with my calculations the distinctions values availbles are in the $ $ $ root $ so -654965396 is the value to be positibe.

 

Hope it help

 

Have yourself a good day.

 

Bye

 Feb 11, 2019
 #2
avatar+99523 
+1

x= { -1, 1, 2 } and y = { -2, -1, 0, 1, 2 }

 

 

The positive ones are

 

(-1)^(-2)    =   1         (1)^(-2) = 1           (2)^(-2) = 1/4

(-1)^0     =  1             (1)^(-1) = 1           (2)^(-1) = 1/2

(-1)^2     =1               (1)^(0) = 1            (2)^(0) =  1

                                 (1)^(1) = 1             (2)^(1) = 2

                                 (1)^(2) = 1             (2)^(2) = 4

 

There are  5  distinct values

 

 

cool cool cool

 Feb 11, 2019
 #3
avatar
0

NO! You are WRONG.

 

GET OUT!

Guest Feb 11, 2019
 #4
avatar
0

TRASH KID

Guest Feb 11, 2019
 #5
avatar
0

Hi

 

happy days

Guest Feb 11, 2019

23 Online Users

avatar
avatar
avatar