1. The function $h(x)$ is defined as: \[h(x) = \left\{ \begin{array}{cl} \lfloor 4x \rfloor & \text{if } x \le \pi, \\ 3-x & \text{if }\pi < x \le 5.2, \\ x^2& \text{if }5.2< x. \end{array}\right.\] Find $h(h(\sqrt{2}))$.

2. Find constants $A$ and $B$ such that \[\frac{x + 7}{x^2 - x - 2} = \frac{A}{x - 2} + \frac{B}{x + 1}\] for all $x$ such that $x\neq -1$ and $x\neq 2$. Give your answer as the ordered pair $(A,B)$.

3. a) Suppose that \[|a - b| + |b - c| + |c - a| = 20.\] What is the maximum possible value of $|a - b|$?

b) Suppose that \[|a - b| + |b - c| + |c - d| + \dots + |m-n| + |n-o| + \cdots+ |x - y| + |y - z| + |z - a| = 20.\] What is the maximum possible value of $|a - n|$?

Guest Apr 22, 2018