We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
56
1
avatar

Given that xy=3/2 and x both and y are nonnegative real numbers, find the minimum value of 10x+(3y/5).

 Jan 27, 2019
 #1
avatar+4777 
0

\(x y = \dfrac 3 2,~x,y \in \mathbb{R^+}\\ y = \dfrac{3}{2x}\\ \text{minimize }10x + \dfrac{3y}{5} = \\ 10x + \dfrac{9}{10x}\)

 

\(\text{Can we use calculus? Assuming yes}\\ \dfrac{d}{dx} \left(10x + \dfrac{9}{10x}\right) = \\ 10 -\dfrac{9}{10x^2}\\\)

 

\(\text{Setting this equal to zero and solving for }x \text{ we get}\\ 10 = \dfrac{9}{10x^2}\\ 100x^2 = 9\\ 10x = 3\\ x = \dfrac{3}{10}\)

 

\(\text{We need to ensure this is a minimum by checking the second derivative at this point}\\ \dfrac{d^2}{dx^2}\left(10x+\dfrac{9}{10x}\right) = \left . \dfrac{18}{10x^3} \right |_{x=\frac{3}{10}} = \\ \dfrac{18\cdot 1000}{10\cdot 27} = \dfrac{200}{3} > 0,~\text{so this is a minimum}\\ x = \dfrac{3}{10},~y = \dfrac{3}{2x} =5\\ xy = \dfrac 3 2\)

.
 Jan 27, 2019

14 Online Users

avatar
avatar
avatar