We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
36
1
avatar

\(If $f(x) = 2x + 3$ and $g(x) = 3x - 2$ find $\frac{f(g(f(2)))}{g(f(g(2)))}$. Express your answer in the form $\frac{a}{b}$.\)

Please help!

 Jun 18, 2019

Best Answer 

 #1
avatar+8406 
+2

f(x)  =  2x + 3          and          g(x)  =  3x - 2

 

f( g( f(2) ) )   =   f( g( 7 ) )   =   f(  19  )   =   41

 

g( f( g(2) ) )   =   g( f( 4 ) )   =   g( 11 )   =   31

 

And so...

 

\(\dfrac{f(\ g(\,f(2)\,)\ )}{g(\ f(\,g(2)\,)\ )}\ =\ \dfrac{41}{31}\)_

 Jun 18, 2019
 #1
avatar+8406 
+2
Best Answer

f(x)  =  2x + 3          and          g(x)  =  3x - 2

 

f( g( f(2) ) )   =   f( g( 7 ) )   =   f(  19  )   =   41

 

g( f( g(2) ) )   =   g( f( 4 ) )   =   g( 11 )   =   31

 

And so...

 

\(\dfrac{f(\ g(\,f(2)\,)\ )}{g(\ f(\,g(2)\,)\ )}\ =\ \dfrac{41}{31}\)_

hectictar Jun 18, 2019

7 Online Users

avatar