+0  
 
0
606
2
avatar

Please help!!

 Apr 14, 2016
 #1
avatar+130511 
0

Using the Law of Cosines, we can find angle BAC

 

6^2 = 5^2 + 5^2 - 2(5)(5)cosBAC

 

[36 - 50] / [-2(25)]  = cosBAC

 

[-14/ -50]  = cosBAC

 

[7/25] = cosBAC

 

And  arccos(7/25)  = BAC

 

And angle OAC  will be 1/2 of this  = (1/2)arccos(7/25)

 

But,  since O is the circumcenter of triangle ABC, OC = OA

 

Then, angle OAC  = angle OCA

 

And angle AOC  = [pi - arcos (7/25)]

 

So.....using the Law of Sines, we can find OC, thusly

 

OC/sinOAC = AC /sin AOC

 

OC / sin [(1/2)arccos(7/25)]  = AC / sin [ pi - arccos(7/25)]

 

OC / sin [(1/2)arccos(7/25)]  = 5 / sin [ pi - arccos(7/25)]

 

OC  = 5 * sin [(1/2)arccos(7/25)] / sin [ pi - arccos(7/25)]  =  3.125 = 25/8

 

And, by symmetry  OC = BO

 

So....using Heron's formula....the area of triangle BOC  can be found thusly :

 

Semi-perimeter  =  [ 2*25/8 + 6] / 2 = 49/8  = s

 

And the area  = 

 

√[ s * (s - a) * (s - b) * (s - c)]       where a = 6 and b and c = 25/8  .... so we have

 

√[ (49/8) * ( 49/8 - 6) * (49/8 - 25/8)^2 ]  =

 

√[ (49/8) * (49/8 - 48/8) * (24/8)^2 ] =

 

√[ (49/8) * (1/8) * ( 3)^2 ] =

 

√[ (49/8) * (9/8) ] =

 

√49 * √9  *  1 / √64  =

 

[7 * 3 ]  / 8   =

 

(21/8)  units^2

 

 

cool cool cool

 Apr 14, 2016
 #2
avatar
0

Much easier, angle BOC is is double the angle BAC.

 Apr 14, 2016

1 Online Users