We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
99
1
avatar

In addition to sine, cosine, and tangent, we have the trigonometric functions secant (sec), cosecant (csc), and cotangent (cot). We define these as follows:

for those values of x where the right side is defined. Explain why we must have cot^2 x + 1 = csc^2x for any x such that x is not an integer multiple of 180\(^\circ \).

 Mar 16, 2019
 #1
avatar+102355 
0

cot^2 x  =   cos^2 x / sin^2 x

And 1   =  sin^2x / sin^2 x

 

So

 

cot^2 x  + 1   =

 

cos^2 x / sin^2 x    +  sin^2 x / sin^2x  =

 

[ cos^2 x + sin ^2 x ]  / sin^2 x  =

 

1 / sin^2x  =

 

(1 / sin x)^2  =

 

csc^2 x

 

 

cool cool cool

 Mar 16, 2019

16 Online Users

avatar