Find all values \(a\) for which there exists an ordered pair \((a,b)\) satisfying the following system of equations: \(\begin{align*} a + ab^2 & = 40b, \\ a - ab^2 & = -32b. \end{align*} \)

List only the values for \(a\).

Guest Feb 18, 2019

#1**+1 **

\(a+ab^2 = 40b\\ a-ab^2 = -32b\\\)

\(\text{add them}\\ 2a=8b\\ b=\dfrac{a}{4}\)

\(\text{subtract them}\\ 2ab^2 = 72b\\ \text{if }b\neq 0\\ 2ab=72\\ 2\dfrac{a^2}{4} = 72\\ a^2 = 144\\ a=\pm 12\)

\(\text{and of course }a=b=0 \text{ is also a solution}\\ \text{so }a = 0, \pm 12\)

.Rom Feb 18, 2019