Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
555
2
avatar

Let F=log1+x1x

 

Express G=log(1+3x+x31+3x213x+x31+3x2) in terms of F.

 May 14, 2020

Best Answer 

 #1
avatar+9488 
+1

G = log(1+3x+x31+3x213x+x31+3x2)  G = log(1+3x21+3x2+3x+x31+3x21+3x21+3x23x+x31+3x2)  G = log(x3+3x2+3x+11+3x2x3+3x23x+11+3x2)  G = log(x3+3x2+3x+1x3+3x23x+1)  G = log((1+x)3(1x)3)  G = log((1+x1x)3)  G = 3log(1+x1x)  G = 3F  .

.
 May 14, 2020
 #1
avatar+9488 
+1
Best Answer

G = log(1+3x+x31+3x213x+x31+3x2)  G = log(1+3x21+3x2+3x+x31+3x21+3x21+3x23x+x31+3x2)  G = log(x3+3x2+3x+11+3x2x3+3x23x+11+3x2)  G = log(x3+3x2+3x+1x3+3x23x+1)  G = log((1+x)3(1x)3)  G = log((1+x1x)3)  G = 3log(1+x1x)  G = 3F  .

hectictar May 14, 2020
 #2
avatar+130466 
+1

Impressive, hectictar   !!!!

 

 

cool cool cool

CPhill  May 14, 2020

1 Online Users