We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
98
6
avatar

1) The sequence a_1, a_2, a_3, ... satisfies a_1 = 19, a_9 = 99, and for all n\( \ge \)3, a_n is the arithmetic mean of the first n - 1 terms. Find a_2.

2) Let a, b, and c be the roots of x^3 - 5x + 7 = 0.Find the monic polynomial, in x, whose roots are a - 2, b - 2, and c - 2.

3) Let a, b, c be positive real numbers such that \(\log_a b + \log_b c + \log_c a = 0.\) Find \((\log_a b)^3 + (\log_b c)^3 + (\log_c a)^3.\)

Thanks in advance!

 Jul 18, 2019
 #1
avatar+23071 
+2

3)

Let a,b,c be positive real numbers such that \(\log_a b + \log_b c + \log_c a = 0\).
Find \((\log_a b)^3 + (\log_b c)^3 + (\log_c a)^3\).

 

\(\text{Let $\log_a b = \mathbf{x} $} \\ \text{Let $\log_b c = \mathbf{y} $} \\ \text{Let $\log_c a = \mathbf{z} $} \)

 

\(\begin{array}{|rcll|} \hline \log_a b + \log_b c + \log_c a &=& 0 \\ \mathbf{x+y+z} &=& \mathbf{0} \qquad (1) \\ \hline \end{array}\)

 

\(\begin{array}{|rclrcl|} \hline \log_a b &=&\dfrac{\log_c b}{\log_c a} \quad&| \quad \log_c b &=&\dfrac{\log_b b}{\log_b c} \\\\ \log_a b &=&\dfrac{\log_b b}{\log_b c\log_c a} \quad&| \quad \log_b b = 1 \\\\ \log_a b &=&\dfrac{1}{\log_b c\log_c a} \\\\ \log_a b\log_b c\log_c a &=& 1 \\\\ \mathbf{xyz} &=& \mathbf{1} \qquad (2) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (x+y+z)^3 &=& (x+y+z)^2(x+y+z) \\ &=& \left(x^2+y^2+z^2+2(xy+yz+xz)\right)(x+y+z) \\ &=& (x^2+y^2+z^2)(x+y+z)+ 2(x+y+z)(xy+yz+xz) \\\\ &=& x^3+y^3+z^3 \\ && +x^2y+x^2z+y^2x+y^2z+z^2x+z^2y + 2(x+y+z)(xy+yz+xz) \\\\ &=& x^3+y^3+z^3 \\ && +(x+y+z)(xy+yz+xz) -3xyz + 2(x+y+z)(xy+yz+xz) \\\\ (x+y+z)^3&=& x^3+y^3+z^3 -3xyz + 3(x+y+z)(xy+yz+xz) \\ \hline \mathbf{x^3+y^3+z^3} &=& \mathbf{(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x^3+y^3+z^3} &=& \mathbf{(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz} \\ && \boxed{x+y+z = 0} \\ x^3+y^3+z^3 &=& 0^3-3\cdot 0\cdot (xy+yz+xz)+3xyz \\ x^3+y^3+z^3 &=& 3xyz \\ && \boxed{xyz = 1} \\ x^3+y^3+z^3 &=& 3\cdot 1 \\ x^3+y^3+z^3 &=& 3 \\ \mathbf{(\log_a b)^3 + (\log_b c)^3 + (\log_c a)^3} &=& \mathbf{3} \\ \hline \end{array}\)

 

laugh

 Jul 18, 2019
 #5
avatar+103122 
+2

Thanks, heureka......I really liked this problem and your solution  !!!!!

 

 

 

cool cool cool

CPhill  Jul 19, 2019
 #6
avatar+23071 
+1

Thank you, CPhill !

 

laugh

heureka  Jul 19, 2019
 #2
avatar+23071 
+2

1)
The sequence \(a_1, a_2, a_3,\ \ldots\) satisfies \(a_1 = 19,\ a_9 = 99\), and for all \(n \ge 3\),

\(a_n\) is the arithmetic mean of the first \(n - 1\) terms.
Find a_2.

 

I assume:

\(\begin{array}{|rcll|} \hline a_3 &=& \dfrac{a_1+a_2}{2} &\text{or }\qquad 2a_3 = a_1+a_2 \\ \hline a_4 &=& \dfrac{a_1+a_2}{3} + \dfrac{a_3}{3} &\text{or }\qquad 3a_4 = a_1+a_2+a_3 \\\\ &=& \dfrac{2a_3}{3} + \dfrac{a_3}{3} \\\\ &=& \dfrac{3a_3}{3} \\\\ \mathbf{a_4} &=& \mathbf{a_3} \\ \hline a_5 &=& \dfrac{a_1+a_2+a_3}{4} + \dfrac{a_4}{4} &\text{or }\qquad 4a_5 = a_1+a_2+a_3+a_4 \\\\ &=& \dfrac{3a_4}{4} + \dfrac{a_4}{4} \\\\ &=& \dfrac{4a_4}{4} \\\\ \mathbf{a_5} &=& \mathbf{a_4} \\ \hline a_6 &=& \dfrac{a_1+a_2+a_3+a_4}{5} + \dfrac{a_5}{5} &\text{or }\qquad 5a_6 = a_1+a_2+a_3+a_4+a_5 \\\\ &=& \dfrac{4a_5}{5} + \dfrac{a_5}{5} \\\\ &=& \dfrac{5a_5}{5} \\\\ \mathbf{a_6} &=& \mathbf{a_5} \\ \hline \ldots \\ a_3&=&a_4=a_5=a_6=a_7=a_8=a_9 \\ a_3 &=& a_9 \quad | \quad a_3 = \dfrac{a_1+a_2}{2},\ a_9 = 99 \\\\ \dfrac{a_1+a_2}{2} &=& 99 \quad | \quad a_1 = 19 \\\\ \dfrac{19+a_2}{2} &=& 99 \quad | \quad \cdot 2 \\\\ 19+a_2 &=& 198 \\\\ a_2 &=& 198-19 \\ \mathbf{ a_2 } &=& \mathbf{179} \\ \hline \end{array}\)

 

The sequence: \(19,\ 179,\ 99,\ 99,\ 99,\ 99,\ 99,\ 99,\ 99,\ \ldots\)

 

laugh

 Jul 18, 2019
 #3
avatar+23071 
+2

2)
Let a, b, and c be the roots of \(x^3 - 5x + 7 = 0\).
Find the monic polynomial, in \(x\), whose roots are \(a - 2\), \(b - 2\), and \(c - 2\).

 

\(\begin{array}{|lrcll|} \hline \text{Let $a$, $b$, and $c$ be the roots} \\ & x^3 - 5x + 7 &=& (x-a)(x-b)(x-c) \\\\ \text{vieta:} \\ \text{coefficient}\ x^2: & -(a+b+c) &=& 0 \\ \text{coefficient}\ x^1: & ab+bc+ac &=& -5 \\ \text{coefficient}\ x^0: & -abc &=& 7 \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \text{Let $a-2$, $b-2$, and $c-2$ be the roots} \\ x^3+Ax^2+Bx+C &=& \Big(x-(a-2)\Big)\Big(x-(b-2)\Big)\Big(x-(c-2)\Big) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \Big(x-(a-2)\Big)\Big(x-(b-2)\Big)\Big(x-(c-2)\Big) \\ &=& -a b c + a b x + 2 a b + a c x + 2 a c - a x^2 - 4 a x - 4 a + b c x \\ && + 2 b c - b x^2 - 4 b x - 4 b - c x^2 - 4 c x - 4 c + x^3 + 6 x^2 + 12 x + 8 \quad | \quad \text{Expanded form} \\ &=& x^3+x^2\Big(6-(a+b+c)\Big)+x\Big(ab+bc+ac-4(a+b+c)+12\Big)-abc+2(ab+bc+ac)-4(a+b+c)+8 \\ && \boxed{ a+b+c=0\\ ab+bc+ac=-5 \\ -abc=7 } \\ &=& x^3+x^2(6-0)+x(-5-0+12)+7+2(-5)-0+8 \\ &=& \mathbf{x^3+6x^2+7x+5} \\ \hline \end{array}\)

 

The monic polynomial, in \(x\), whose roots are \(a - 2\), \(b - 2\), and \(c - 2\) is \(\mathbf{x^3+6x^2+7x+5}\)

 

laugh

 Jul 18, 2019
 #4
avatar+23071 
+1

2)
Let a, b, and c be the roots of \(x^3 - 5x + 7 = 0\).
Find the monic polynomial, in \(x\), whose roots are \(a - 2\), \(b - 2\), and \(c - 2\).

 

\(\begin{array}{|rcll|} \hline && x'^3 - 5x' + 7 \quad | \quad x'=x+2 \quad \text{moving the polynomial by two units} \\ && (x+2)^3 - 5(x+2) + 7 \\ &=& x^3+3x^2\cdot 2+3x\cdot 2^2+2^3-5x-10+7 \\ &=& x^3+ 6x^2+7x+5 \\ \hline \end{array} \)

 

laugh

 Jul 18, 2019

17 Online Users

avatar
avatar