+0  
 
0
31
1
avatar

If $A$, $B$ and $C$ are positive integers such that $\frac{A\sqrt{B}}{C} = \frac{8}{3\sqrt{2}}$, what is the value of $A+B+C$ given that $A$ and $C$ have no common prime factors, and $B$ has no perfect-square factors other than 1?

 
Guest Jan 12, 2018
Sort: 

1+0 Answers

 #1
avatar+80874 
+1

\($\frac{A\sqrt{B}}{C} = \frac{8}{3\sqrt{2}}$\)

 

Implies  that 

 

A√B / C  =  8 / √18         cross-muliply

 

A√[18B] =  8C     ..... let  B  = 2.....and we have

 

A√36  =  8C

 

6A  =  8C       ......this is equalized when  A = 4  and C  = 3

 

Check :

 

4√2 / 3  =  8 / [ 3 √2]

 

4 √2   =  8 / √2

 

√2 * √2  =   8 / 4

 

2  =  2      

 

So     A  +  B   +  C    =      4  +  3  +  2   =      9

 

 

cool cool cool

 
CPhill  Jan 12, 2018

18 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details