We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
330
1
avatar

If $A$, $B$ and $C$ are positive integers such that $\frac{A\sqrt{B}}{C} = \frac{8}{3\sqrt{2}}$, what is the value of $A+B+C$ given that $A$ and $C$ have no common prime factors, and $B$ has no perfect-square factors other than 1?

 Jan 12, 2018
 #1
avatar+101870 
+1

\($\frac{A\sqrt{B}}{C} = \frac{8}{3\sqrt{2}}$\)

 

Implies  that 

 

A√B / C  =  8 / √18         cross-muliply

 

A√[18B] =  8C     ..... let  B  = 2.....and we have

 

A√36  =  8C

 

6A  =  8C       ......this is equalized when  A = 4  and C  = 3

 

Check :

 

4√2 / 3  =  8 / [ 3 √2]

 

4 √2   =  8 / √2

 

√2 * √2  =   8 / 4

 

2  =  2      

 

So     A  +  B   +  C    =      4  +  3  +  2   =      9

 

 

cool cool cool

 Jan 12, 2018

6 Online Users