+0  
 
0
28
2
avatar

The value of y varies inversely as sqrt x and when x=2, y=4. What is x when y=1?

 Mar 20, 2020
 #1
avatar+18926 
0

y varies inversely as sqrt(x)     --->     y = k / sqrt(x)

 

x = 2, y = 4                              --->      4  =  k / sqrt(2)     --->     4·sqrt(2)  =  k

 

x = ?, y = 1                              --->     1  =  4·sqrt(2) / sqrt(x)   

                                     --->     1·sqrt(x)  =  4·sqrt(2)

                                     --->         sqrt(x)  =  4·sqrt(2)

                                     --->    [ sqrt(x) ]2  =  [ 4·sqrt(2) ]2

                                     --->                  x  =  32

 Mar 20, 2020
 #2
avatar+1612 
0

geno... I think you had a mistake.

 

The formula for inverse proportion is x= k/y.

 

From the x and y values we were given, we can find out that 2=k/4.

We can figure out that k=8.

 

Now the equation: Since we know k, we can plug in k as x, and y as 1 from the given value.

x=8/1.

 

Therefore, x will be equal to 8.

 Mar 20, 2020
edited by CalTheGreat  Mar 20, 2020

11 Online Users

avatar