+0  
 
+1
272
3
avatar+344 

$\displaystyle \prod_{n=3}^{5} n^{\frac{1}{2\pi}}$

 Jun 13, 2022
edited by hipie  Jun 13, 2022
edited by hipie  Jun 13, 2022
 #1
avatar
0

Is no one going to answer? wow $\displaystyle \int_{dum}^{dum} \ y'all \ dum \ ddum$

 Jun 14, 2022
 #2
avatar+344 
0

bro.

hipie  Jun 14, 2022
 #3
avatar+580 
+2

\(\prod _{n=3}^5n^{\frac{1}{2\pi }}\)

 

\(a_3=3^{\frac{1}{2\pi }} \)

 

\(a_4=4^{\frac{1}{2\pi }}\)

 

\(a_5=5^{\frac{1}{2\pi }}\)

 

\(3^{\frac{1}{2\pi }}\cdot \:4^{\frac{1}{2\pi }}\cdot \:5^{\frac{1}{2\pi }}\)

 

\(=60^{\frac{1}{2\pi }}\)

.
 Jun 14, 2022

4 Online Users

avatar
avatar
avatar