+0  
 
0
41
1
avatar

We have a triangle $\triangle ABC$ and a point $K$ on segment $\overline{BC}$ such that $AK$ is an altitude to $\triangle ABC$. If $AK = 6,$ $BK = 8$, and $CK = 6,$ then what is the perimeter of the triangle?

Guest Nov 19, 2018
 #1
avatar+92787 
+1

         A

        

         6

 

B  8   K     6       C

 

 

Since AK is an altitude....we can use the Pythagorean Theorem here

 

AB  = √ [ BK^2 + AK^2 ]  =  √ [ 8^2 + 6^2]  = √100 =  10

 

And  AC  = √ AK^2 + KC^2 ]   =  √ [ 6^2 + 6^2] = √ [ 2 * 6^2 ]  = 6√2

 

So....the perimeter is

 

AB + BK + KC + AC   = 

 

10 + 8 + 6 + 6√2  =

 

24 + 6√2   units  ≈  32.49 units

 

 

 

cool cool cool

CPhill  Nov 19, 2018

4 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.