+0  
 
0
23
1
avatar

Let P be the matrix that projects onto j: that is, we want P to satisfy

\(\mathbf{P} \mathbf{v} = \text{The projection of $\mathbf{v}$ onto } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\)

for all vectors v. Use the pictures below to calculate \(\mathbf{P}\mathbf{i}, \mathbf{P} \mathbf{j}, \mathbf{P}\mathbf{k}\).

 Mar 16, 2020
 #1
avatar
0

Remember that Pi represents the first column, etc. Thus

\(\mathbf{P} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)

.
 Mar 16, 2020

12 Online Users

avatar
avatar