+0  
 
0
64
1
avatar

Part a) Let z and w be complex numbers satisfying |z| = 4 and |w| = 2. What is \(|z+w|^2, |zw|^2, |z-w|^2, \left| \dfrac{z}{w} \right|^2 \)?

Part b) Let z and w be complex numbers satisfying |z| = 5, |w| = 2, and \(z\overline{w} = 6+8i.\) What is \(|z+w|^2, |zw|^2, |z-w|^2, \left| \dfrac{z}{w} \right|^2 \)?

 Dec 22, 2019
 #1
avatar
0

(a) |z + w|^2 = 36, |zw|^2 = 64, |z - w|^2 = 4, |z/w|^2 = 4

 

(b) |z + w|^2 = 29, |zw|^2 = 100, |z - w|^2 = 24,|z/w|^2 = 25/4

 Dec 22, 2019

59 Online Users

avatar
avatar
avatar
avatar
avatar