+0  
 
0
294
1
avatar

It does not come out to y^7 FYI. I can't figure it out

 Jul 12, 2017
 #1
avatar+7348 
+1

Sometimes when these exponents get confusing it helps to write out all the letters as many times as the exponent says. Also, we can write out the prime factorization 147...

 

\(\sqrt{{\color{magenta}147}\,\cdot\,{\color{RedOrange}x^6}\,\cdot\,{\color{teal}y^7}} \\~\\ =\sqrt{{\color{magenta}7\,\cdot\,7\,\cdot\,3}\,\cdot\,{\color{RedOrange}x\,\cdot\,x\,\cdot\,x\,\cdot\,x\,\cdot\,x\,\cdot\,x}\,\cdot\,{\color{teal}y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}} \\~\\ =\sqrt{{\color{magenta}7\,\cdot\,7}}\cdot\sqrt{{\color{magenta}3}}\,\cdot\,\sqrt{{\color{RedOrange}x \,\cdot\, x}} \,\cdot\, \sqrt{{\color{RedOrange}x \,\cdot\, x}}\,\cdot\, \sqrt{{\color{RedOrange}x \,\cdot\, {\color{RedOrange}x}}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y}}\)

 

 

The square root of  (7 * 7)  is the square root of  7 squared, which is  7  .

The square root of  (x * x)  is  x  .  The square root of  (y * y)  is  y  .

 

So we can write the original expression as...

 

\( =7\,\cdot\,\sqrt{3}\,\cdot\,x \,\cdot\, x \,\cdot\,x \,\cdot \, y\,\cdot\,y\,\cdot\,y\,\cdot\,\sqrt{y} \\~\\ =7\,\cdot\,\sqrt3\,\cdot\,x^3\,\cdot\,y^3\,\cdot\,\sqrt{y} \\~\\ =7x^3y^3\sqrt{3y}\)

.
 Jul 12, 2017

27 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.