It does not come out to y^7 FYI. I can't figure it out

Guest Jul 12, 2017

Sometimes when these exponents get confusing it helps to write out all the letters as many times as the exponent says. Also, we can write out the prime factorization 147...


\(\sqrt{{\color{magenta}147}\,\cdot\,{\color{RedOrange}x^6}\,\cdot\,{\color{teal}y^7}} \\~\\ =\sqrt{{\color{magenta}7\,\cdot\,7\,\cdot\,3}\,\cdot\,{\color{RedOrange}x\,\cdot\,x\,\cdot\,x\,\cdot\,x\,\cdot\,x\,\cdot\,x}\,\cdot\,{\color{teal}y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y\,\cdot\,y}} \\~\\ =\sqrt{{\color{magenta}7\,\cdot\,7}}\cdot\sqrt{{\color{magenta}3}}\,\cdot\,\sqrt{{\color{RedOrange}x \,\cdot\, x}} \,\cdot\, \sqrt{{\color{RedOrange}x \,\cdot\, x}}\,\cdot\, \sqrt{{\color{RedOrange}x \,\cdot\, {\color{RedOrange}x}}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y\,\cdot\,y}}\,\cdot\,\sqrt{{\color{teal}y}}\)



The square root of  (7 * 7)  is the square root of  7 squared, which is  7  .

The square root of  (x * x)  is  x  .  The square root of  (y * y)  is  y  .


So we can write the original expression as...


\( =7\,\cdot\,\sqrt{3}\,\cdot\,x \,\cdot\, x \,\cdot\,x \,\cdot \, y\,\cdot\,y\,\cdot\,y\,\cdot\,\sqrt{y} \\~\\ =7\,\cdot\,\sqrt3\,\cdot\,x^3\,\cdot\,y^3\,\cdot\,\sqrt{y} \\~\\ =7x^3y^3\sqrt{3y}\)

hectictar  Jul 12, 2017

20 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.