+0  
 
0
589
0
avatar

1.consider the integral , where n is a non-negative integer

\({I}_{n}= \int_{0}^{1} x^ne^{-2x} dx, \)

i)express \({I}_{n} \) in terms of  f\({I}_{n-1} \)or n>=1.

 

ii) hence , evalutae \(\int_{1}^{e}(lny/y)^3\)    dy

2. Given a constant a>0, show that \(\int_{-a}^{a} f(x)dx=\int_{0}^{a}[f(-x)+f(x)]dx \)

 and hence, given that \(\int_{-1}^{1} ln(x+\sqrt{1+x^2}) dx\)

3. prove or disprove :If f is continuous , then \(\int_{0}^{1} f(x) dx= \int_{0}^{1} f(1-x)dx\)  \(\)

 
 Mar 28, 2016

0 Online Users