+0  
 
0
86
2
avatar

What is the radius of the circle inscribed in triangle ABC if AB = AC=7 and BC=6? Express your answer in simplest radical form.

 Aug 2, 2022

Best Answer 

 #1
avatar+2448 
-1

The inradius is \(\text{Area} \over \text{semiperimeter}\)

 

By Heron's formula, the area is \(\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{10 \times 3 \times 3 \times \times 4} = \sqrt{360} = \sqrt{36} \times \sqrt {10} = 6 \sqrt{10}\)

 

The semiperimeter is \((7 + 7 + 6) \div 2 = 10\), so the inradius is \({6 \sqrt{10} \over 10} = \color{brown}\boxed{3 \sqrt {10} \over 5}\)

 Aug 2, 2022
 #1
avatar+2448 
-1
Best Answer

The inradius is \(\text{Area} \over \text{semiperimeter}\)

 

By Heron's formula, the area is \(\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{10 \times 3 \times 3 \times \times 4} = \sqrt{360} = \sqrt{36} \times \sqrt {10} = 6 \sqrt{10}\)

 

The semiperimeter is \((7 + 7 + 6) \div 2 = 10\), so the inradius is \({6 \sqrt{10} \over 10} = \color{brown}\boxed{3 \sqrt {10} \over 5}\)

BuilderBoi Aug 2, 2022
 #2
avatar
+1

thank you!!! it was correct btw. :))

Guest Aug 2, 2022

25 Online Users