We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
125
4
avatar+62 

a) Four positive integers \(w, x,y,and \) \(z \) satisfy \(wx + w + x &= 524, xy + x + y &= 146, yz + y + z &= 104,\) and wxyz= 8! what is w-z??? The answer is 10 btw but its to help on part b.

b) In Part a of this problem, you found the values of integers that satisfied the system of equations. In this part of the problem you will write up a full solution that describes how to solve this problem.

Four positive integers \(w, x,y,and \) \(z \) satisfy  \(wx + w + x &= 524, xy + x + y &= 146, yz + y + z &= 104,\) and wxyz= 8! What are w, , y, and z???

 Jul 22, 2019
edited by BIGChungus  Jul 22, 2019
edited by BIGChungus  Jul 22, 2019
 #1
avatar+1338 
0

Why is this off-topic? 

Just curious.

 

nvm you fixed it.

 Jul 22, 2019
edited by tommarvoloriddle  Jul 23, 2019
 #2
avatar+23137 
+2

Four positive integers \(w\), \(x\), \(y\),and \(z\) satisfy \(wx + w + x = 524\), \(xy + x + y = 146\), \(yz + y + z = 104\), and \(wxyz= 8!\).
What are \(w\), \(x\), \(y\), and \(z\) ?

 

Solution by substitution:

\(\begin{array}{|rcll|} \hline wx + w + x &=& 524 \\ x(w+1)+w &=& 524 \\ x(w+1) &=& 524-w \\ \mathbf{x} &=& \mathbf{\dfrac{524-w} {w+1}} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline xy + x + y &=& 146 \\ y(x+1) + x &=& 146 \\ y(x+1) &=& 146-x \\ \mathbf{y} &=& \mathbf{\dfrac{146-x} {x+1}} \\\\ y &=& \dfrac{146-\dfrac{524-w} {w+1}} {\dfrac{524-w} {w+1}+1} \\ \ldots \\ \mathbf{y} &=& \mathbf{\dfrac{147w-378}{525} } \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline yz + y + z &=& 104 \\ z(y+1) + x &=& 146 \\ z(y+1) &=& 104-y \\ \mathbf{z} &=& \mathbf{\dfrac{104-y} {y+1}} \\ z &=& \dfrac{104-\dfrac{147w-378}{525}} {\dfrac{147w-378}{525}+1} \\ \ldots \\ \mathbf{z} &=& \mathbf{\dfrac{54978-147w}{147(w+1)} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{wxyz} &=& \mathbf{8!} \\ wxyz &=& 40320 \\ 40320 &=& w \left(\dfrac{524-w} {w+1}\right) \left(\dfrac{147w-378}{525} \right) \left(\dfrac{54978-147w}{147(w+1)} \right) \\ 40320 &=& \dfrac{w(524-w)(147w-378)(54978-147w)} {77175(w+1)^2} \\ 3111696000 (w+1)^2 &=& w(524-w)(147w-378 )(54978-147w ) \\ \ldots \\ \hline \end{array}\\ \begin{array}{|lrcll|} \hline & -21609 w^4 + 19460448 w^3 - 1173047652 w^2 + 17112994416 w + 3111696000 &=& 0 \\ \hline \end{array}\)

\(\begin{array}{|lrcll|} \hline \text{Solutions: }\\ &\mathbf{ w } &=& \mathbf{24}\ \checkmark \qquad \text{integer} \\ & w&=&0.17961 \\ &w&=&39.918 \\ &w&=&36.83 \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \mathbf{x} &=& \mathbf{\dfrac{524-w} {w+1}} \\ x &=& \dfrac{524-24} {24+1} \\ x &=& \dfrac{500} {25} \\ \mathbf{x} &=& \mathbf{20} \\\\ \mathbf{y} &=& \mathbf{\dfrac{146-x} {x+1}} \\ y &=& \dfrac{146-20} {20+1} \\ y &=& \dfrac{126} {21} \\ \mathbf{y} &=& \mathbf{6} \\\\ \mathbf{z} &=& \mathbf{\dfrac{104-y} {y+1}} \\ z &=& \dfrac{104-6} {6+1} \\ z &=& \dfrac{98} {7} \\ \mathbf{z} &=& \mathbf{14} \\ \hline \end{array}\)

 

laugh

 Jul 23, 2019
 #3
avatar+104414 
+1

Very impressive Heureka :)

 Jul 23, 2019
 #4
avatar+23137 
+2

Thank you, Melody !

 

laugh

heureka  Jul 24, 2019

29 Online Users

avatar
avatar
avatar