+0  
 
0
12
1
avatar+4 

Find the sum of all solutions to
 

\(\begin{align*} (\log_2 x)(\log_3 x)(\log_4 x)(\log_5 x) &= (\log_2 x)(\log_3 x)(\log_4 x) + (\log_2 x)(\log_3 x)(\log_5 x) \\ &\quad + (\log_2 x)(\log_4 x)(\log_5 x) + (\log_3 x)(\log_4 x)(\log_5 x). \end{align*}\)

 Apr 10, 2024
 #1
avatar+1911 
-1

The answer is 1 + 2 + 3 + 4 = 10.

 Apr 14, 2024

2 Online Users

avatar