Find all values of x that satisfy the equation .\($\dfrac{x}{3} + 1 = \dfrac{x + 3}{x}$. \)

3 and -3

\(\dfrac{x}{3} + 1 = \dfrac{x + 3}{x}\\ \dfrac{x+3}{3} = \dfrac{x + 3}{x}\\ 3x*\dfrac{x+3}{3} = 3x*\dfrac{x + 3}{x}\\ x(x+3)= 3(x+3)\\ x^2+3x=3x+9\\ x^2=9\\ x=\pm 3\)

thx melody! can you solve this?\($\frac{2\sqrt[3]9}{1 + \sqrt[3]3 + \sqrt[3]9}.$\)