I have no idea what this means.
The diagram shows triangle KLM. KL = 8.9 cm, LM = 8.8 cm, KM = 7.1 cm
N is the point on LM such that size of angle NKL = 3/5 * size of angle KLM.
Calculate the lengh of LN.
We can manipulate the Law of Cosines to find the measure of angle KLM
[7.1^2 -8.9^2 -8.8^2 ] / [ -2 * 8.9 * 8.8] = cos KLM
arccos ( [7.1^2 -8.9^2 -8.8^2 ] / [ -2 * 8.9 * 8.8] ) = KLM ≈ 47.29°
So NKL = 47.29 * 3/5 = 28.374°
So angle KNL = 180 - 47.29 - 28.374 = 104.336°
And using the Law of Sines
LN / sin NKL = KL /sin KNL
LN / sin ( 28.374) = 8.9 / sin ( 104.336)
LN = 8.9 *sin (28.374) / sin (104.336) ≈ 4.365