Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
105
1
avatar

Find the largest possible distance between $(3 + 4i)z^3$ and $z^5$ when plotted in the complex plane.

 Jul 6, 2023
 #1
avatar
0

Let z=x+yi, where x and y are real numbers. Then (3+4i)z3=(3+4i)(x3+3ix2y3xy2y3) =3x3+12ix2y+12xy23y3+4x2+4xy4y2i.Also, z5=x5+5x4y−10x3y2+10x2y3−5xy4+y5, so |(3+4i)z3z5|2=(3x3+12ix2y+12xy23y3+4x2+4xy4y2i)2 (x5+5x4y10x3y2+10x2y35xy4+y5)2 =9x6+48x4y2+36x2y4+9y672x5y+144x3y372x2y5+36xy7 x1050x8y+100x6y2100x4y4+50x2y6y10 =x10+9x650x8y+144x6y272x4y4+72x2y59y6+y10 =(x610x4y+36x2y236xy4+y6)2(x109x6+y10)2.By AM-GM, x610x4y+36x2y236xy4+y655(x6)(x4y)(x2y2)(xy4)(y6) =5x2y2,and x109x6+y1055(x10)(9x6)(y10) =45x6y10.Therefore, |(3+4i)z3z5|2(5x2y2)2(45x6y10)2 =25x4y42025x12y12 =2000x12y12+25x4y4 =(2000x6y6+25)2.Since x and y are real, [(-2000x^6 y^6 + 25)^2 \ge 25^2 = 625,]so ∣(3+4i)z3−z5∣2≥625. Hence, ∣(3+4i)z3−z5∣≥25.

Equality occurs when x=1 and y=0, so the maximum distance is 25​.

 Jul 6, 2023

1 Online Users