Find the largest possible distance between $(3 + 4i)z^3$ and $z^5$ when plotted in the complex plane.
Let z=x+yi, where x and y are real numbers. Then (3+4i)z3=(3+4i)(x3+3ix2y−3xy2−y3) =3x3+12ix2y+12xy2−3y3+4x2+4xy−4y2i.Also, z5=x5+5x4y−10x3y2+10x2y3−5xy4+y5, so |(3+4i)z3−z5|2=(3x3+12ix2y+12xy2−3y3+4x2+4xy−4y2i)2 −(x5+5x4y−10x3y2+10x2y3−5xy4+y5)2 =9x6+48x4y2+36x2y4+9y6−72x5y+144x3y3−72x2y5+36xy7 −x10−50x8y+100x6y2−100x4y4+50x2y6−y10 =−x10+9x6−50x8y+144x6y2−72x4y4+72x2y5−9y6+y10 =(x6−10x4y+36x2y2−36xy4+y6)2−(x10−9x6+y10)2.By AM-GM, x6−10x4y+36x2y2−36xy4+y6≥55√(x6)(x4y)(x2y2)(xy4)(y6) =5x2y2,and x10−9x6+y10≥55√(x10)(9x6)(y10) =45x6y10.Therefore, |(3+4i)z3−z5|2≥(5x2y2)2−(45x6y10)2 =25x4y4−2025x12y12 =−2000x12y12+25x4y4 =(−2000x6y6+25)2.Since x and y are real, [(-2000x^6 y^6 + 25)^2 \ge 25^2 = 625,]so ∣(3+4i)z3−z5∣2≥625. Hence, ∣(3+4i)z3−z5∣≥25.
Equality occurs when x=1 and y=0, so the maximum distance is 25.