If $\sqrt{2\sqrt{t-2}} = \sqrt[4]{7 - t}$, then find $t$.
\(\sqrt{2\sqrt{t-2}} = \sqrt[4]{7 - t}\)
First I multiplied both sides of the equation by ^4.
4(t-2) = 7 - t
4t - 8 = 7 - t
t = 3.